Suppr超能文献

利用高维身体-机器接口学习控制复杂机器人

Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces.

作者信息

Lee Jongmin M, Gebrekristos Temesgen, DE Santis Dalia, Nejati-Javaremi Mahdieh, Gopinath Deepak, Parikh Biraj, Mussa-Ivaldi Ferdinando A, Argall Brenna D

机构信息

Northwestern University, USA and Shirley Ryan AbilityLab, USA.

Shirley Ryan AbilityLab, USA.

出版信息

ACM Trans Hum Robot Interact. 2024 Sep;13(3). doi: 10.1145/3630264. Epub 2024 Aug 26.

Abstract

When individuals are paralyzed from injury or damage to the brain, upper body movement and function can be compromised. While the use of body motions to interface with machines has shown to be an effective noninvasive strategy to provide movement assistance and to promote physical rehabilitation, learning to use such interfaces to control complex machines is not well understood. In a five session study, we demonstrate that a subset of an uninjured population is able to learn and improve their ability to use a high-dimensional Body-Machine Interface (BoMI), to control a robotic arm. We use a sensor net of four inertial measurement units, placed bilaterally on the upper body, and a BoMI with the capacity to directly control a robot in six dimensions. We consider whether the way in which the robot control space is mapped from human inputs has any impact on learning. Our results suggest that the space of robot control does play a role in the evolution of human learning: specifically, though robot control in joint space appears to be more intuitive initially, control in task space is found to have a greater capacity for longer-term improvement and learning. Our results further suggest that there is an inverse relationship between control dimension couplings and task performance.

摘要

当个体因脑部受伤或受损而瘫痪时,上半身的运动和功能可能会受到影响。虽然利用身体动作与机器交互已被证明是一种有效的非侵入性策略,可提供运动辅助并促进身体康复,但对于如何学习使用此类接口来控制复杂机器,人们还了解得不够深入。在一项为期五节的研究中,我们证明了一部分未受伤的人群能够学习并提高他们使用高维身体-机器接口(BoMI)来控制机械臂的能力。我们使用了一个由四个惯性测量单元组成的传感器网络,双侧放置在上半身,以及一个能够直接在六个维度上控制机器人的BoMI。我们考虑了机器人控制空间从人类输入映射的方式是否对学习有任何影响。我们的结果表明,机器人控制空间在人类学习的发展中确实起到了作用:具体而言,虽然关节空间中的机器人控制最初似乎更直观,但任务空间中的控制被发现具有更大的长期改进和学习能力。我们的结果进一步表明,控制维度耦合与任务性能之间存在反比关系。

相似文献

4
A Non-Linear Body Machine Interface for Controlling Assistive Robotic Arms.用于控制辅助机器人手臂的非线性体机器接口。
IEEE Trans Biomed Eng. 2023 Jul;70(7):2149-2159. doi: 10.1109/TBME.2023.3237081. Epub 2023 Jun 19.
10
Learning latent actions to control assistive robots.学习潜在动作以控制辅助机器人。
Auton Robots. 2022;46(1):115-147. doi: 10.1007/s10514-021-10005-w. Epub 2021 Aug 4.

本文引用的文献

3
Learning latent actions to control assistive robots.学习潜在动作以控制辅助机器人。
Auton Robots. 2022;46(1):115-147. doi: 10.1007/s10514-021-10005-w. Epub 2021 Aug 4.
6
Brain-Machine Interfaces: The Role of the Neurosurgeon.脑机接口:神经外科医生的角色。
World Neurosurg. 2021 Feb;146:140-147. doi: 10.1016/j.wneu.2020.11.028. Epub 2020 Nov 13.
7
Machine Learning for Neural Decoding.机器学习在神经解码中的应用。
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
9
Linear and Non-linear Dimensionality-Reduction Techniques on Full Hand Kinematics.全手运动学的线性和非线性降维技术
Front Bioeng Biotechnol. 2020 May 5;8:429. doi: 10.3389/fbioe.2020.00429. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验