Suppr超能文献

植物遗传学、可持续农业与全球粮食安全。

Plant genetics, sustainable agriculture and global food security.

机构信息

University of California, Davis, CA 95616, USA.

出版信息

Genetics. 2011 May;188(1):11-20. doi: 10.1534/genetics.111.128553.

Abstract

The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

摘要

美国和世界在食品、环境、能源和健康等领域面临着严峻的社会挑战。从历史上看,植物遗传学的进步为应对这些挑战提供了新的知识和技术。在可预见的未来,植物遗传学仍然是全球粮食安全、和平与繁荣的关键组成部分。数以百万计的生命取决于作物遗传改良的程度,以适应不断增长的全球人口、不断变化的气候和不断缩小的环境资源。尽管人们对植物与环境相互作用的生物学仍有许多需要了解,但植物遗传改良的基本技术,包括作物遗传工程,已经到位,并有望在满足全球粮食安全的长期需求方面发挥关键作用。然而,经过基因改良的种子只是解决方案的一部分。这种种子必须融入基于生态的农业系统,并根据其对环境、经济和社会的影响进行评估——这是可持续农业的三大支柱。在这篇综述中,我描述了过去十年中,人们是如何将基因工程作物整合到世界各地的农业实践中的,并讨论了它们目前和未来对可持续农业系统的贡献。

相似文献

4
Achieving food and environmental security: new approaches to close the gap.实现粮食与环境安全:缩小差距的新方法。
Philos Trans R Soc Lond B Biol Sci. 2014 Feb 17;369(1639):20120272. doi: 10.1098/rstb.2012.0272. Print 2014 Apr 5.
8
Global food demand and the sustainable intensification of agriculture.全球粮食需求与农业可持续集约化发展。
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20260-4. doi: 10.1073/pnas.1116437108. Epub 2011 Nov 21.

引用本文的文献

7
Enabling Genome Editing for Enhanced Agricultural Sustainability.实现基因组编辑以增强农业可持续性。
Front Genome Ed. 2022 May 18;4:898950. doi: 10.3389/fgeed.2022.898950. eCollection 2022.

本文引用的文献

3
Evolutionary ecology of insect adaptation to Bt crops.昆虫对Bt作物适应性的进化生态学
Evol Appl. 2010 Sep;3(5-6):561-73. doi: 10.1111/j.1752-4571.2010.00129.x. Epub 2010 Apr 30.
5
Towards establishment of a rice stress response interactome.致力于建立水稻应激反应互作组。
PLoS Genet. 2011 Apr;7(4):e1002020. doi: 10.1371/journal.pgen.1002020. Epub 2011 Apr 14.
8
Plant science. Communal benefits of transgenic corn.植物科学。转基因玉米的公共效益。
Science. 2010 Oct 8;330(6001):189-90. doi: 10.1126/science.1196864.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验