Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
Pflugers Arch. 2011 Aug;462(2):315-30. doi: 10.1007/s00424-011-0959-9. Epub 2011 May 10.
Patch clamp studies of the potassium-transport proteins TRK1,2 in Saccharomyces cerevisiae have revealed large chloride efflux currents: at clamp voltages negative to -100 mV, and intracellular chloride concentrations >10 mM (J. Membr. Biol. 198:177, 2004). Stationary-state current-voltage analysis led to an in-series two-barrier model for chloride activation: the lower barrier (α) being 10-13 kcal/mol located ~30% into the membrane from the cytoplasmic surface; and the higher one (β) being 12-16 kcal/mol located at the outer surface. Measurements carried out with lyotrophic anions and osmoprotective solutes have now demonstrated the following new properties: (1) selectivity for highly permeant anions changes with extracellular pH; at pH(o)= 5.5: I(-)≈ Br(-) >Cl(-) >SCN(-) >NO (3)(-) , and at pH(o) 7.5: I(-)≈ Br(-) > SCN(-) > NO(3)(-) >Cl(-). (2) NO(2)(-) acts like "superchoride", possibly enhancing the channel's intrinsic permeability to Cl(-). (3) SCN(-) and NO(3)(-) block chloride permeability. (4) The order of selectivity for several slightly permeant anions (at pH(o)= 5.5 only) is formate>gluconate>acetate>>phosphate(-1). (5) All anion conductances are modulated (choked) by osmoprotective solutes. (6) The data and descriptive two-barrier model evoke a hypothetical structure (Biophys. J. 77:789, 1999) consisting of an intramembrane homotetramer of fungal TRK molecules, arrayed radially around a central cluster of four single helices (TM7) from each monomer. (7) That tetrameric cluster would resemble the hydrophobic core of (pentameric) ligand-gated ion channels, and would suggest voltage-modulated hydrophobic gating to underlie anion permeation.
对酿酒酵母中的钾转运蛋白 TRK1、2 的膜片钳研究揭示了大的氯离子流出电流:在钳位电压为负-100 mV 及胞内氯离子浓度>10 mM 时(J. Membr. Biol. 198:177, 2004)。稳态电流-电压分析得出氯离子激活的串联双势垒模型:较低的势垒 (α) 为 10-13 kcal/mol,位于细胞质面内约 30%处;较高的势垒 (β) 为 12-16 kcal/mol,位于外表面。使用亲脂性阴离子和渗透保护溶质进行的测量现在证明了以下新特性:(1)对高渗透性阴离子的选择性随细胞外 pH 而变化;在 pH(o)=5.5 时:I(-)≈Br(-) >Cl(-) >SCN(-) >NO (3)(-),而在 pH(o) 7.5 时:I(-)≈Br(-) >SCN(-) >NO(3)(-) >Cl(-)。(2)NO(2)(-) 起“超氯”作用,可能增强通道对 Cl(-)的固有渗透性。(3)SCN(-) 和 NO(3)(-) 阻断氯离子通透性。(4)几种稍渗透性阴离子(仅在 pH(o)=5.5 时)的选择性顺序为甲酸根>葡萄糖酸盐>乙酸根>>磷酸盐(-1)。(5)所有阴离子电导均受渗透保护溶质的调节(阻塞)。(6)数据和描述性双势垒模型引出了一个假设结构(Biophys. J. 77:789, 1999),由真菌 TRK 分子的膜内同源四聚体组成,围绕每个单体的四个单螺旋(TM7)的中央簇呈放射状排列。(7)该四聚体簇类似于(五聚体)配体门控离子通道的疏水区核心,并表明电压调制的疏水性门控是阴离子渗透的基础。