Suppr超能文献

[具体研究中的]进化工程揭示了一种依赖于[某种物质]的钾离子流入机制以实现对丙酸的耐受性。 注:原文中“in ”部分内容缺失,以上译文根据现有内容并结合可能语境进行了补充翻译,实际翻译时需根据完整准确的原文进行。

Evolutionary engineering in reveals a -dependent potassium influx mechanism for propionic acid tolerance.

作者信息

Xu Xin, Williams Thomas C, Divne Christina, Pretorius Isak S, Paulsen Ian T

机构信息

1Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia.

2CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601 Australia.

出版信息

Biotechnol Biofuels. 2019 Apr 23;12:97. doi: 10.1186/s13068-019-1427-6. eCollection 2019.

Abstract

BACKGROUND

Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative to replace petroleum refining. However, PA inhibits yeast growth at concentrations well below the titers typically required for a commercial bioprocess.

RESULTS

Adaptive laboratory evolution (ALE) with PA concentrations ranging from 15 to 45 mM enabled the isolation of yeast strains with more than threefold improved tolerance to PA. Through whole genome sequencing and CRISPR-Cas9-mediated reverse engineering, unique mutations in , which encodes a high-affinity potassium transporter, were revealed as the cause of increased propionic acid tolerance. Potassium supplementation growth assays showed that mutated alleles and extracellular potassium supplementation not only conferred tolerance to PA stress but also to multiple organic acids.

CONCLUSION

Our study has demonstrated the use of ALE as a powerful tool to improve yeast tolerance to PA. Potassium transport and maintenance is not only critical in yeast tolerance to PA but also boosts tolerance to multiple organic acids. These results demonstrate high-affinity potassium transport as a new principle for improving organic acid tolerance in strain engineering.

摘要

背景

丙酸(PA)是石油精炼过程中作为副产物产生的一种关键平台化学品,已被广泛用作食品防腐剂和许多行业中的重要化学中间体。通过工程酵母作为细胞工厂进行微生物生产丙酸是一种潜在的可持续替代方法,可取代石油精炼。然而,在远低于商业生物工艺通常所需滴度的浓度下,丙酸就会抑制酵母生长。

结果

在15至45 mM的丙酸浓度下进行适应性实验室进化(ALE),能够分离出对丙酸耐受性提高三倍以上的酵母菌株。通过全基因组测序和CRISPR-Cas9介导的逆向工程,发现编码高亲和力钾转运蛋白的基因中的独特突变是丙酸耐受性增加的原因。钾补充生长试验表明,突变的等位基因和细胞外钾补充不仅赋予了对丙酸胁迫的耐受性,还赋予了对多种有机酸的耐受性。

结论

我们的研究证明了使用适应性实验室进化作为提高酵母对丙酸耐受性的有力工具。钾的运输和维持不仅对酵母对丙酸的耐受性至关重要,而且还提高了对多种有机酸的耐受性。这些结果证明了高亲和力钾转运是菌株工程中提高有机酸耐受性的新原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d48/6477708/f9115649b928/13068_2019_1427_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验