Suppr超能文献

肌动蛋白成核 Arp2/3 复合物通过调节丝状伪足前体促进轴突丝状伪足和分支的形成。

The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia.

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.

出版信息

Dev Neurobiol. 2011 Sep;71(9):747-58. doi: 10.1002/dneu.20907.

Abstract

The emergence of axonal filopodia is the first step in the formation of axon collateral branches. In vitro, axonal filopodia emerge from precursor cytoskeletal structures termed actin patches. However, nothing is known about the cytoskeletal dynamics of the axon leading to the formation of filopodia in the relevant tissue environment. In this study we investigated the role of the actin nucleating Arp2/3 complex in the formation of sensory axon actin patches, filopodia, and branches. By combining in ovo chicken embryo electroporation mediated gene delivery with a novel acute ex vivo spinal cord preparation, we demonstrate that actin patches form along sensory axons and give rise to filopodia in situ. Inhibition of Arp2/3 complex function in vitro and in vivo decreases the number of axonal filopodia. In vitro, Arp2/3 complex subunits and upstream regulators localize to actin patches. Analysis of the organization of actin filaments in actin patches using platinum replica electron microscopy reveals that patches consist of networks of actin filaments, and filaments in axonal filopodia exhibit an organization consistent with the Arp2/3-based convergent elongation mechanism. Nerve growth factor (NGF) promotes formation of axonal filopodia and branches through phosphoinositide 3-kinase (PI3K). Inhibition of the Arp2/3 complex impairs NGF/PI3K-induced formation of axonal actin patches, filopodia, and the formation of collateral branches. Collectively, these data reveal that the Arp2/3 complex contributes to the formation of axon collateral branches through its involvement in the formation of actin patches leading to the emergence of axonal filopodia.

摘要

轴突丝状伪足的出现是形成轴突侧支分支的第一步。在体外,轴突丝状伪足从称为肌动蛋白斑块的前体细胞骨架结构中出现。然而,在相关的组织环境中,对于导致形成丝状伪足的轴突细胞骨架动力学,我们一无所知。在这项研究中,我们研究了肌动蛋白成核 Arp2/3 复合物在感觉轴突肌动蛋白斑块、丝状伪足和分支形成中的作用。通过将鸡胚电穿孔介导的基因传递与新型急性离体脊髓制备相结合,我们证明了肌动蛋白斑块沿着感觉轴突形成,并在原位产生丝状伪足。Arp2/3 复合物功能的体外和体内抑制减少了轴突丝状伪足的数量。在体外,Arp2/3 复合物亚基和上游调节剂定位于肌动蛋白斑块。使用铂复制电子显微镜分析肌动蛋白斑块中肌动蛋白丝的组织发现,斑块由肌动蛋白丝网络组成,并且轴突丝状伪足中的丝呈现出与基于 Arp2/3 的会聚延伸机制一致的组织。神经生长因子 (NGF) 通过磷酸肌醇 3-激酶 (PI3K) 促进轴突丝状伪足和分支的形成。Arp2/3 复合物的抑制会损害 NGF/PI3K 诱导的轴突肌动蛋白斑块、丝状伪足和侧支分支的形成。总之,这些数据表明,Arp2/3 复合物通过参与形成导致轴突丝状伪足出现的肌动蛋白斑块,有助于形成轴突侧支分支。

相似文献

4
Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.
Dev Neurobiol. 2016 Oct;76(10):1092-110. doi: 10.1002/dneu.22377. Epub 2016 Jan 25.
6
Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.
Curr Biol. 2012 Jun 19;22(12):1109-15. doi: 10.1016/j.cub.2012.04.019. Epub 2012 May 17.
8
Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
Dev Neurobiol. 2015 Dec;75(12):1441-61. doi: 10.1002/dneu.22294. Epub 2015 May 27.
10
CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
Dev Neurobiol. 2017 Apr;77(4):454-473. doi: 10.1002/dneu.22420. Epub 2016 Aug 2.

引用本文的文献

2
Autism spectrum disorder related phenotypes in a mouse model lacking the neuronal actin binding protein profilin 2.
Front Cell Neurosci. 2025 Feb 26;19:1540989. doi: 10.3389/fncel.2025.1540989. eCollection 2025.
3
Genetically encoded tension heterogeneity sculpts cardiac trabeculation.
Sci Adv. 2025 Mar 7;11(10):eads2998. doi: 10.1126/sciadv.ads2998.
5
6
The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration.
Mol Neurobiol. 2024 Aug;61(8):5646-5664. doi: 10.1007/s12035-023-03879-7. Epub 2024 Jan 13.
7
Interneuron odyssey: molecular mechanisms of tangential migration.
Front Neural Circuits. 2023 Sep 14;17:1256455. doi: 10.3389/fncir.2023.1256455. eCollection 2023.
9
Antagonistic Activities of Fmn2 and ADF Regulate Axonal F-Actin Patch Dynamics and the Initiation of Collateral Branching.
J Neurosci. 2022 Sep 28;42(39):7355-7369. doi: 10.1523/JNEUROSCI.3107-20.2022. Epub 2022 Sep 7.
10
The Role of Spastin in Axon Biology.
Front Cell Dev Biol. 2022 Jul 5;10:934522. doi: 10.3389/fcell.2022.934522. eCollection 2022.

本文引用的文献

2
The cytoskeletal and signaling mechanisms of axon collateral branching.
Dev Neurobiol. 2011 Mar;71(3):201-20. doi: 10.1002/dneu.20852.
3
Developmental regulation of axon branching in the vertebrate nervous system.
Development. 2011 Jan;138(2):183-95. doi: 10.1242/dev.046441.
4
Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs.
J Neurosci. 2010 Nov 17;30(46):15464-78. doi: 10.1523/JNEUROSCI.1800-10.2010.
6
Brain-derived neurotrophic factor and the development of structural neuronal connectivity.
Dev Neurobiol. 2010 Apr;70(5):271-88. doi: 10.1002/dneu.20774.
7
E3 ligase Nedd4 promotes axon branching by downregulating PTEN.
Neuron. 2010 Feb 11;65(3):341-57. doi: 10.1016/j.neuron.2010.01.017.
9
Imaging cytoskeleton components by electron microscopy.
Methods Mol Biol. 2009;586:187-206. doi: 10.1007/978-1-60761-376-3_10.
10
Characterization of two classes of small molecule inhibitors of Arp2/3 complex.
Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验