Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA.
Nature. 2011 May 12;473(7346):208-11. doi: 10.1038/nature10078.
Dimethylsulphoniopropionate (DMSP) accounts for up to 10% of carbon fixed by marine phytoplankton in ocean surface waters, producing an estimated 11.7-103 Tmol S per year, most of which is processed by marine bacteria through the demethylation/demethiolation pathway. This pathway releases methanethiol (MeSH) instead of the climatically active gas dimethylsulphide (DMS) and enables marine microorganisms to assimilate the reduced sulphur. Despite recognition of this critical microbial transformation for over two decades, the biochemical pathway and enzymes responsible have remained unidentified. Here we show that three new enzymes related to fatty acid β-oxidation constitute the pathway that assimilates methylmercaptopropionate (MMPA), the first product of DMSP demethylation/demethiolation, and that two previously unknown coenzyme A (CoA) derivatives, 3-methylmercaptopropionyl-CoA (MMPA-CoA) and methylthioacryloyl-CoA (MTA-CoA), are formed as novel intermediates. A member of the marine roseobacters, Ruegeria pomeroyi DSS-3, requires the MMPA-CoA pathway for MMPA assimilation and MeSH production. This pathway and the ability to produce MeSH from MMPA are present in diverse bacteria, and the ubiquitous SAR11 clade bacterium Pelagibacter ubique possesses enzymes for at least the first two steps. Analysis of marine metagenomic data indicates that the pathway is widespread among bacterioplankton in the ocean surface waters, making it one of the most important known routes for acquisition of reduced carbon and sulphur by surface ocean heterotrophs.
二甲基巯基丙酸酯(DMSP)占海洋浮游植物在海洋表面水中固定碳的 10%,每年产生约 11.7-103 Tmol S,其中大部分通过海洋细菌通过脱甲基/脱巯基途径进行处理。该途径释放甲硫醇(MeSH)而不是活跃的气候气体二甲基硫(DMS),并使海洋微生物能够同化还原硫。尽管人们认识到这种关键的微生物转化已经超过二十年,但负责该转化的生化途径和酶仍然未知。在这里,我们表明三种与脂肪酸β-氧化有关的新酶构成了同化甲基巯基丙酸酯(MMPA)的途径,MMPA 是 DMSP 脱甲基/脱巯基的第一个产物,并且两个以前未知的辅酶 A(CoA)衍生物,3-甲基巯基丙酰 CoA(MMPA-CoA)和甲基硫代丙烯酰 CoA(MTA-CoA),作为新型中间体形成。海洋红杆菌属的一个成员,Ruegeria pomeroyi DSS-3,需要 MMPA-CoA 途径来同化 MMPA 和产生 MeSH。该途径以及从 MMPA 产生 MeSH 的能力存在于各种细菌中,而普遍存在的 SAR11 分支细菌 Pelagibacter ubique 至少具有前两个步骤的酶。对海洋宏基因组数据的分析表明,该途径在海洋表面水中的细菌浮游生物中广泛存在,使其成为海洋表面异养生物获取还原碳和硫的最重要途径之一。