Suppr超能文献

二甲基巯基丙酸内盐(DMSP)的细菌分解作用。

Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP).

机构信息

Department of Microbiology, University of Georgia Athens, GA, USA.

出版信息

Front Microbiol. 2011 Aug 12;2:172. doi: 10.3389/fmicb.2011.00172. eCollection 2011.

Abstract

Dimethylsulfoniopropionate (DMSP) is a metabolite produced primarily by marine phytoplankton and is the main precursor to the climatically important gas dimethylsulfide (DMS). DMS is released upon bacterial catabolism of DMSP, but it is not the only possible fate of DMSP sulfur. An alternative demethylation/demethiolation pathway results in the eventual release of methanethiol, a highly reactive volatile sulfur compound that contributes little to the atmospheric sulfur flux. The activity of these pathways control the natural flux of sulfur released to the atmosphere. Although these biochemical pathways and the factors that regulate them are of great interest, they are poorly understood. Only recently have some of the genes and pathways responsible for DMSP catabolism been elucidated. Thus far, six different enzymes have been identified that catalyze the cleavage of DMSP, resulting in the release of DMS. In addition, five of these enzymes appear to produce acrylate, while one produces 3-hydroxypropionate. In contrast, only one enzyme, designated DmdA, has been identified that catalyzes the demethylation reaction producing methylmercaptopropionate (MMPA). The metabolism of MMPA is performed by a series of three coenzyme-A mediated reactions catalyzed by DmdB, DmdC, and DmdD. Interestingly, CandidatusPelagibacter ubique, a member of the SAR11 clade of Alphaproteobacteria that is highly abundant in marine surface waters, possessed functional DmdA, DmdB, and DmdC enzymes. Microbially mediated transformations of both DMS and methanethiol are also possible, although many of the biochemical and molecular genetic details are still unknown. This review will focus on the recent discoveries in the biochemical pathways that mineralize and assimilate DMSP carbon and sulfur, as well as the areas for which a comprehensive understanding is still lacking.

摘要

二甲硫丙酸酯(DMSP)是一种主要由海洋浮游植物产生的代谢产物,也是气候上重要的气体二甲硫(DMS)的主要前体。DMS 是在 DMSP 的细菌分解代谢后释放出来的,但它不是 DMSP 硫的唯一可能归宿。另一种脱甲基/脱巯基途径导致甲硫醇的最终释放,甲硫醇是一种高度反应性的挥发性硫化合物,对大气硫通量的贡献很小。这些途径的活性控制着释放到大气中的硫的自然通量。尽管这些生化途径及其调控因素非常重要,但人们对它们的了解还很有限。直到最近,一些负责 DMSP 分解代谢的基因和途径才被阐明。迄今为止,已经鉴定出六种不同的酶,它们可以催化 DMSP 的裂解,从而释放出 DMS。此外,其中五种酶似乎产生丙烯酸盐,而一种酶产生 3-羟基丙酸盐。相比之下,只有一种酶,称为 DmdA,被鉴定为催化产生甲基汞硫丙酸酯(MMPA)的脱甲基反应。MMPA 的代谢是通过一系列由辅酶 A 介导的反应完成的,由 DmdB、DmdC 和 DmdD 催化。有趣的是,海洋表面水中丰度很高的 SAR11 分支的α变形菌的成员假交替单胞菌属,拥有功能性的 DmdA、DmdB 和 DmdC 酶。DMS 和甲硫醇的微生物介导转化也是可能的,尽管许多生化和分子遗传细节仍然未知。这篇综述将集中讨论最近在使 DMSP 碳和硫矿化和同化的生化途径方面的发现,以及仍需要全面了解的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验