Suppr超能文献

在线和离线监测微载体上干细胞的扩增。

Online- and offline- monitoring of stem cell expansion on microcarrier.

机构信息

Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390, Giessen, Germany.

出版信息

Cytotechnology. 2011 Aug;63(4):325-35. doi: 10.1007/s10616-011-9359-4. Epub 2011 May 12.

Abstract

In the biopharmaceutical industry, adherent growing stem cell cultures gain worldwide importance as cell products. The cultivation process of these cells, such as in stirred tank reactors or in fixed bed reactors, is highly sophisticated. Cultivations need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time on-line monitoring tools are recommended. A tool meeting the new requirements may be the dielectric spectroscopy for online viable cell mass determination by measurement of the permittivity. To establish these tools, proper offline methods for data correlation are required. The cell number determination of adherent cells on microcarrier is difficult, as it requires cell detachment from the carrier, which highly increases the statistical error. As an offline method, a fluorescence assay based on SYBR(®)GreenI was developed allowing fast and easy total cell concentration determination without the need to detach the cells from the carrier. The assay is suitable for glass carriers used in stirred tank reactor systems or in fixed bed systems, may be suitable for different cell lines and can be applied to high sample numbers easily. The linear dependency of permittivity to cell concentration of suspended stem cells with the dielectric spectroscopy is shown for even very small cell concentrations. With this offline-method, a correlation of the cell concentration grown on carrier to the permittivity data measured by the dielectric spectroscopy was done successfully.

摘要

在生物制药行业,贴壁生长的干细胞培养物作为细胞产品在全球范围内变得越来越重要。这些细胞的培养过程,如在搅拌槽反应器或固定床反应器中,非常复杂。需要对培养过程进行监测和控制,以保证产品质量并满足 GMP 要求。随着过程分析技术(PAT)的出现,对过程监测和控制的要求发生了变化,建议使用实时在线监测工具。符合新要求的工具可能是介电谱法,通过测量介电常数来在线测定活细胞质量。为了建立这些工具,需要适当的离线方法来进行数据关联。贴壁细胞在微载体上的细胞数量测定很困难,因为需要将细胞从载体上分离下来,这会极大地增加统计误差。作为一种离线方法,开发了一种基于 SYBR(®)GreenI 的荧光测定法,允许快速、轻松地测定总细胞浓度,而无需将细胞从载体上分离下来。该测定法适用于搅拌槽反应器系统或固定床系统中使用的玻璃载体,可能适用于不同的细胞系,并且易于应用于大量样品。介电谱法显示悬浮干细胞的介电常数与细胞浓度呈线性关系,即使细胞浓度非常低也是如此。通过这种离线方法,成功地将载体上生长的细胞浓度与介电光谱法测量得到的介电常数数据相关联。

相似文献

1
Online- and offline- monitoring of stem cell expansion on microcarrier.
Cytotechnology. 2011 Aug;63(4):325-35. doi: 10.1007/s10616-011-9359-4. Epub 2011 May 12.
2
Process control in cell culture technology using dielectric spectroscopy.
Biotechnol Adv. 2011 Jul-Aug;29(4):391-401. doi: 10.1016/j.biotechadv.2011.03.002. Epub 2011 Mar 17.
4
In situ process analytical technology for real time viable cell density and cell viability during live-virus vaccine production.
Int J Pharm. 2024 Jan 5;649:123630. doi: 10.1016/j.ijpharm.2023.123630. Epub 2023 Nov 29.
5
Multivariate data analysis of capacitance frequency scanning for online monitoring of viable cell concentrations in small-scale bioreactors.
Anal Bioanal Chem. 2020 Apr;412(9):2089-2102. doi: 10.1007/s00216-019-02096-3. Epub 2019 Oct 13.
6
High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.
Biotechnol Bioeng. 2018 May;115(5):1186-1194. doi: 10.1002/bit.26538. Epub 2018 Feb 4.
8
Robust Expansion of Human Pluripotent Stem Cells: Integration of Bioprocess Design With Transcriptomic and Metabolomic Characterization.
Stem Cells Transl Med. 2015 Jul;4(7):731-42. doi: 10.5966/sctm.2014-0270. Epub 2015 May 15.
9
Microcarrier-based expansion process for hMSCs with high vitality and undifferentiated characteristics.
Int J Artif Organs. 2012 Feb;35(2):93-107. doi: 10.5301/ijao.5000077.
10
Bioreactor expansion of human mesenchymal stem cells according to GMP requirements.
Methods Mol Biol. 2015;1283:199-218. doi: 10.1007/7651_2014_117.

引用本文的文献

1
Design of cell expansion processes for adherent-growing cells with mDoE-workflow.
Eng Life Sci. 2023 Apr 25;23(5):e2200059. doi: 10.1002/elsc.202200059. eCollection 2023 May.
2
Volumetric imaging of human mesenchymal stem cells (hMSCs) for non-destructive quantification of 3D cell culture growth.
PLoS One. 2023 Mar 28;18(3):e0282298. doi: 10.1371/journal.pone.0282298. eCollection 2023.
3
Magnetoelastic Monitoring System for Tracking Growth of Human Mesenchymal Stromal Cells.
Sensors (Basel). 2023 Feb 7;23(4):1832. doi: 10.3390/s23041832.
6
Impedance-based cellular assays for regenerative medicine.
Philos Trans R Soc Lond B Biol Sci. 2018 Jul 5;373(1750). doi: 10.1098/rstb.2017.0226.
7
Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers.
Biotechnol Bioeng. 2017 Sep;114(9):2032-2042. doi: 10.1002/bit.26328. Epub 2017 May 23.
8
Enzymatic detachment of therapeutic mesenchymal stromal cells grown on glass carriers in a bioreactor.
Open Biomed Eng J. 2013 Dec 27;7:147-58. doi: 10.2174/1874120701307010147. eCollection 2013.

本文引用的文献

1
Microcarrier technology, present status and perspective.
Cytotechnology. 1995 Jan;18(1-2):51-6. doi: 10.1007/BF00744319.
2
Process control in cell culture technology using dielectric spectroscopy.
Biotechnol Adv. 2011 Jul-Aug;29(4):391-401. doi: 10.1016/j.biotechadv.2011.03.002. Epub 2011 Mar 17.
5
Use of Encapsulated Stem Cells to Overcome the Bottleneck of Cell Availability for Cell Therapy Approaches.
Transfus Med Hemother. 2010 Apr;37(2):66-73. doi: 10.1159/000285777. Epub 2010 Mar 8.
8
Expansion and Harvesting of hMSC-TERT.
Open Biomed Eng J. 2007 Sep 7;1:38-46. doi: 10.2174/1874120700701010038.
9
Large scale production of stem cells and their derivatives.
Adv Biochem Eng Biotechnol. 2009;114:201-35. doi: 10.1007/10_2008_27.
10
Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative.
Biotechnol Adv. 2009 Nov-Dec;27(6):726-732. doi: 10.1016/j.biotechadv.2009.05.003. Epub 2009 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验