Suppr超能文献

从定性数据到定量模型:大肠杆菌中噬菌体休克蛋白应激反应的分析

From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli.

作者信息

Toni Tina, Jovanovic Goran, Huvet Maxime, Buck Martin, Stumpf Michael P H

机构信息

Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ, UK.

出版信息

BMC Syst Biol. 2011 May 12;5:69. doi: 10.1186/1752-0509-5-69.

Abstract

BACKGROUND

Bacteria have evolved a rich set of mechanisms for sensing and adapting to adverse conditions in their environment. These are crucial for their survival, which requires them to react to extracellular stresses such as heat shock, ethanol treatment or phage infection. Here we focus on studying the phage shock protein (Psp) stress response in Escherichia coli induced by a phage infection or other damage to the bacterial membrane. This system has not yet been theoretically modelled or analysed in silico.

RESULTS

We develop a model of the Psp response system, and illustrate how such models can be constructed and analyzed in light of available sparse and qualitative information in order to generate novel biological hypotheses about their dynamical behaviour. We analyze this model using tools from Petri-net theory and study its dynamical range that is consistent with currently available knowledge by conditioning model parameters on the available data in an approximate Bayesian computation (ABC) framework. Within this ABC approach we analyze stochastic and deterministic dynamics. This analysis allows us to identify different types of behaviour and these mechanistic insights can in turn be used to design new, more detailed and time-resolved experiments.

CONCLUSIONS

We have developed the first mechanistic model of the Psp response in E. coli. This model allows us to predict the possible qualitative stochastic and deterministic dynamic behaviours of key molecular players in the stress response. Our inferential approach can be applied to stress response and signalling systems more generally: in the ABC framework we can condition mathematical models on qualitative data in order to delimit e.g. parameter ranges or the qualitative system dynamics in light of available end-point or qualitative information.

摘要

背景

细菌已经进化出一套丰富的机制来感知和适应其环境中的不利条件。这些机制对它们的生存至关重要,因为它们需要对细胞外应激做出反应,如热休克、乙醇处理或噬菌体感染。在这里,我们专注于研究大肠杆菌中由噬菌体感染或细菌膜的其他损伤诱导的噬菌体休克蛋白(Psp)应激反应。该系统尚未在理论上进行建模或在计算机上进行分析。

结果

我们开发了一个Psp反应系统的模型,并说明了如何根据可用的稀疏和定性信息构建和分析此类模型,以便生成关于其动态行为的新生物学假设。我们使用Petri网理论工具分析该模型,并通过在近似贝叶斯计算(ABC)框架中根据可用数据对模型参数进行条件设定,研究其与当前现有知识一致的动态范围。在这种ABC方法中,我们分析随机和确定性动力学。这种分析使我们能够识别不同类型的行为,这些机制性见解反过来可用于设计新的、更详细和时间分辨的实验。

结论

我们已经开发了大肠杆菌中Psp反应的第一个机制模型。该模型使我们能够预测应激反应中关键分子参与者可能的定性随机和确定性动态行为。我们的推理方法可以更广泛地应用于应激反应和信号系统:在ABC框架中,我们可以根据定性数据对数学模型进行条件设定,以便根据可用的终点或定性信息来界定例如参数范围或定性系统动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cd/3127791/a35d713527b6/1752-0509-5-69-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验