Department of Microbiology and Parasitology, China Medical University, Shenyang City, Liaoning Province, People's Republic of China 110001.
Appl Environ Microbiol. 2011 Jul;77(13):4318-28. doi: 10.1128/AEM.00309-11. Epub 2011 May 13.
Streptococcus gordonii is an important member of the oral biofilm. One of its phenotypic traits is the production of hydrogen peroxide (H2O2). H2O2 is an antimicrobial component produced by S. gordonii that is able to antagonize the growth of cariogenic Streptococcus mutans. Strategies that modulate H2O2 production in the oral cavity may be useful as a simple therapeutic mechanism to improve oral health, but little is known about the regulation of H2O2 production. The enzyme responsible for H2O2 production is pyruvate oxidase, encoded by spxB. The functional studies of spxB expression and SpxB abundance presented in this report demonstrate a strong dependence on environmental oxygen tension and carbohydrate availability. Carbon catabolite repression (CCR) modulates spxB expression carbohydrate dependently. Catabolite control protein A (CcpA) represses spxB expression by direct binding to the spxB promoter, as shown by electrophoretic mobility shift assays (EMSA). Promoter mutation studies revealed the requirement of two catabolite-responsive elements (CRE) for CcpA-dependent spxB regulation, as evaluated by spxB expression and phenotypic H2O2 production assays. Thus, molecular mechanisms for the control of S. gordonii spxB expression are presented for the first time, demonstrating the possibility of manipulating H2O2 production for increased competitive fitness.
戈登链球菌是口腔生物膜的重要成员。其表型特征之一是产生过氧化氢 (H2O2)。H2O2 是由 S. gordonii 产生的一种抗菌成分,能够拮抗致龋变形链球菌的生长。调节口腔内 H2O2 产生的策略可能作为一种简单的治疗机制来改善口腔健康,但对 H2O2 产生的调节知之甚少。负责 H2O2 产生的酶是丙酮酸氧化酶,由 spxB 编码。本报告中呈现的 spxB 表达和 SpxB 丰度的功能研究表明,其强烈依赖于环境氧张力和碳水化合物的可用性。碳分解代谢物阻遏 (CCR) 依赖于碳水化合物调节 spxB 表达。正如电泳迁移率变动分析 (EMSA) 所示,代谢物控制蛋白 A (CcpA) 通过直接结合 spxB 启动子来抑制 spxB 表达。启动子突变研究表明,两个代谢物响应元件 (CRE) 是 CcpA 依赖性 spxB 调节所必需的,这通过 spxB 表达和表型 H2O2 产生测定来评估。因此,首次提出了控制 S. gordonii spxB 表达的分子机制,证明了操纵 H2O2 产生以提高竞争适应性的可能性。