Department of Mathematics, University of Chicago, Chicago, Illinois, United States of America.
PLoS One. 2011 May 6;6(5):e14804. doi: 10.1371/journal.pone.0014804.
Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework.
神经元网络产生多种多样的振荡模式,这些模式源自网络的全局属性、单个神经元的振荡倾向,或者这两者的混合。在这里,我们描述了噪声极限环和准周期,这两种机制是神经元网络中涌现的振荡现象的基础,而其单个组成部分,即随机发放的神经元本身并不振荡。这两种机制都被证明可以在群体水平上产生 gamma 波段的振荡,而单个神经元的发放频率远低于群体频率。在经历噪声极限环的网络中,尖峰序列显示出一个优选周期,而在准周期的情况下则不存在,这是由于准周期中相位信息的衰减更快。这些振荡在稀疏连接的网络中持续存在,并且网络连接的变化导致振荡频率的变化。这样的神经元网络表现为对确定性威尔逊-考恩方程的随机扰动,并且网络经历噪声极限环或准周期,这取决于它们是否具有极限环或弱稳定焦点。这些机制为神经网络中节律性发放的出现提供了一个新的视角,展示了在一个简单而通用的框架中,群体水平的振荡与非常不规则的单个尖峰序列的共存。