Suppr超能文献

身份推断的概率模型。

Probabilistic Models for Inference about Identity.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Jan;34(1):144-57. doi: 10.1109/TPAMI.2011.104. Epub 2011 May 19.

Abstract

Many face recognition algorithms use "distance-based" methods: Feature vectors are extracted from each face and distances in feature space are compared to determine matches. In this paper, we argue for a fundamentally different approach. We consider each image as having been generated from several underlying causes, some of which are due to identity (latent identity variables, or LIVs) and some of which are not. In recognition, we evaluate the probability that two faces have the same underlying identity cause. We make these ideas concrete by developing a series of novel generative models which incorporate both within-individual and between-individual variation. We consider both the linear case, where signal and noise are represented by a subspace, and the nonlinear case, where an arbitrary face manifold can be described and noise is position-dependent. We also develop a "tied" version of the algorithm that allows explicit comparison of faces across quite different viewing conditions. We demonstrate that our model produces results that are comparable to or better than the state of the art for both frontal face recognition and face recognition under varying pose.

摘要

许多人脸识别算法使用“基于距离”的方法:从每张人脸中提取特征向量,并比较特征空间中的距离以确定匹配。在本文中,我们提出了一种截然不同的方法。我们认为每张图像都是由几个潜在原因生成的,其中一些是由于身份(潜在身份变量或 LIV),而另一些则不是。在识别中,我们评估两张人脸是否具有相同的潜在身份原因的概率。我们通过开发一系列新的生成模型来实现这些想法,这些模型同时包含个体内和个体间的变化。我们既考虑了信号和噪声由子空间表示的线性情况,也考虑了可以描述任意人脸流形且噪声与位置相关的非线性情况。我们还开发了算法的“绑定”版本,允许在非常不同的观察条件下对面部进行显式比较。我们证明,我们的模型在正面人脸识别和不同姿势下的人脸识别方面的表现可与或优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验