Suppr超能文献

用于从多变量数据计算似然比的源间变异的高斯混合模型。

Gaussian Mixture Models of Between-Source Variation for Likelihood Ratio Computation from Multivariate Data.

作者信息

Franco-Pedroso Javier, Ramos Daniel, Gonzalez-Rodriguez Joaquin

机构信息

ATVS-Biometric Recognition Group, Universidad Autonoma de Madrid, Madrid, Spain.

出版信息

PLoS One. 2016 Feb 22;11(2):e0149958. doi: 10.1371/journal.pone.0149958. eCollection 2016.

Abstract

In forensic science, trace evidence found at a crime scene and on suspect has to be evaluated from the measurements performed on them, usually in the form of multivariate data (for example, several chemical compound or physical characteristics). In order to assess the strength of that evidence, the likelihood ratio framework is being increasingly adopted. Several methods have been derived in order to obtain likelihood ratios directly from univariate or multivariate data by modelling both the variation appearing between observations (or features) coming from the same source (within-source variation) and that appearing between observations coming from different sources (between-source variation). In the widely used multivariate kernel likelihood-ratio, the within-source distribution is assumed to be normally distributed and constant among different sources and the between-source variation is modelled through a kernel density function (KDF). In order to better fit the observed distribution of the between-source variation, this paper presents a different approach in which a Gaussian mixture model (GMM) is used instead of a KDF. As it will be shown, this approach provides better-calibrated likelihood ratios as measured by the log-likelihood ratio cost (Cllr) in experiments performed on freely available forensic datasets involving different trace evidences: inks, glass fragments and car paints.

摘要

在法医学中,犯罪现场及嫌疑人身上发现的微量物证必须根据对其进行的测量来评估,这些测量通常以多变量数据的形式呈现(例如,几种化合物或物理特征)。为了评估该证据的强度,似然比框架正越来越多地被采用。为了通过对来自同一来源的观测值(或特征)之间出现的变异(源内变异)以及来自不同来源的观测值之间出现的变异(源间变异)进行建模,直接从单变量或多变量数据中获得似然比,已经推导出了几种方法。在广泛使用的多变量核似然比中,假定源内分布呈正态分布且在不同来源之间是恒定的,源间变异通过核密度函数(KDF)进行建模。为了更好地拟合观测到的源间变异分布,本文提出了一种不同的方法,即使用高斯混合模型(GMM)代替KDF。正如将要展示的那样,在涉及不同微量物证(墨水、玻璃碎片和汽车漆)的免费法医学数据集上进行的实验中,通过对数似然比代价(Cllr)来衡量,这种方法提供了校准效果更好的似然比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09fd/4762660/83913b23dab4/pone.0149958.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验