Novartis Vaccines and Diagnostics, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9619-24. doi: 10.1073/pnas.1106536108. Epub 2011 May 17.
Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-Å X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.
呼吸道合胞病毒(RSV)是婴儿细支气管炎的主要病原体,尽管已经进行了 40 多年的疫苗研究,但仍然是未满足的主要疫苗需求。基于 RSV 主要中和抗原融合(F)糖蛋白的疫苗候选物由于稳定性、纯度、重现性和效力方面的问题而失败。相关副流感病毒 F 糖蛋白的晶体结构揭示了融合前和融合后状态之间的大构象变化,表明融合后 F 抗原可能不能有效地引发中和抗体。我们已经产生了一种均匀、稳定和可重复的融合后 RSV F 免疫原,在免疫动物中引发高滴度的中和抗体。该 RSV F 的 3.2Å X 射线晶体结构与基于同源性的结构模型显示出重要差异。具体而言,RSV F 晶体结构显示了融合后 RSV F 三聚体表面上关键中和抗体结合位点的暴露。这种出乎意料的结构特征解释了工程 RSV F 抗原作为免疫原的效率。这项工作说明了基于结构的抗原设计如何指导候选疫苗抗原的合理优化。