Serrano M Ángeles, Sagués Francesc
Departament de Química Física, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain.
BMC Syst Biol. 2011 May 19;5:76. doi: 10.1186/1752-0509-5-76.
Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood.
Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results.
We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
细胞水平的网络重建是系统生物学的一项重大进展。然而,我们远未充分挖掘其潜力。通常,所研究系统不断增加的复杂性超过了实验能力,或者越来越复杂的实验方案仅被用于提高已建立相互作用的置信度而未得到充分利用。对于代谢网络,当前使用的置信度评分系统根据实验证据或基于模型的可能性的嵌套类别对反应进行离散评分。
在此,我们提出一种基于网络的互补评分系统,该系统利用代谢网络作为二分图的统计规律。作为例证,我们将其应用于大肠杆菌的代谢。该模型根据观测值进行调整,以得出各个代谢物 - 反应对之间的连接概率,并在验证后从概率角度评估每个反应的可靠性。这种基于网络的评分系统揭示了可能在功能或进化上重要的非常特殊的反应,确定了突出的实验靶点,并能够进一步确认建模结果。
鉴于许多生物网络的天然二分性,我们预见在生物相互作用的不同亚细胞或超细胞水平上有广泛的潜在应用。