Suppr超能文献

利用比较基因组学和基于约束的模型识别代谢网络中的功能差异。

Identification of functional differences in metabolic networks using comparative genomics and constraint-based models.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

PLoS One. 2012;7(4):e34670. doi: 10.1371/journal.pone.0034670. Epub 2012 Apr 16.

Abstract

Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.

摘要

基因组尺度网络重建是理解细胞代谢的有用工具,对这些重建的比较可以深入了解生物体之间的代谢差异。最近,比较基因组尺度模型的工作主要集中在将代谢网络在反应水平上对齐,然后研究反应和基因内容的差异和相似性上。然而,这些反应比较方法既耗时又不能确定网络差异对网络功能状态的影响。我们开发了一种双层混合整数规划方法 CONGA,通过比较基因水平对齐的代谢网络重建来识别代谢网络之间的功能差异。我们首先识别两个重建中的直系同源基因,然后使用 CONGA 确定基因含量的差异在何种条件下导致代谢能力的差异。通过寻找在一个或两个模型中删除某个基因会导致所选反应(例如生长或副产物分泌)的通量在一个模型中相对于另一个模型不成比例地变化的基因,我们能够识别出具有独特代谢能力的结构代谢网络差异。我们使用 CONGA 探索了大肠杆菌的两个代谢重建之间的功能差异,并确定了一组反应,这些反应负责两个模型之间的化学产物差异。我们还使用这种方法来帮助开发 Synechococcus sp. PCC 7002 的基因组尺度模型。最后,我们根据代谢能力的差异,提出了结核分枝杆菌和金黄色葡萄球菌的潜在抗菌靶点。通过这些例子,我们证明了比较代谢网络的基于基因的方法可以在功能水平上快速比较代谢模型。使用 CONGA,我们可以识别导致不同功能预测的反应和基因内容差异。由于 CONGA 提供了一个通用框架,因此它可以应用于发现这里未呈现的模型和生物系统之间的功能差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a61/3359066/796716a2c984/pone.0034670.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验