Suppr超能文献

从电子病历中推导断言的灵活框架。

A flexible framework for deriving assertions from electronic medical records.

机构信息

Human Language Technology Research Institute, University of Texas at Dallas, Richardson, Texas 75080-0688, USA.

出版信息

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):568-73. doi: 10.1136/amiajnl-2011-000152. Epub 2011 Jul 1.

Abstract

OBJECTIVE

This paper describes natural-language-processing techniques for two tasks: identification of medical concepts in clinical text, and classification of assertions, which indicate the existence, absence, or uncertainty of a medical problem. Because so many resources are available for processing clinical texts, there is interest in developing a framework in which features derived from these resources can be optimally selected for the two tasks of interest.

MATERIALS AND METHODS

The authors used two machine-learning (ML) classifiers: support vector machines (SVMs) and conditional random fields (CRFs). Because SVMs and CRFs can operate on a large set of features extracted from both clinical texts and external resources, the authors address the following research question: Which features need to be selected for obtaining optimal results? To this end, the authors devise feature-selection techniques which greatly reduce the amount of manual experimentation and improve performance.

RESULTS

The authors evaluated their approaches on the 2010 i2b2/VA challenge data. Concept extraction achieves 79.59 micro F-measure. Assertion classification achieves 93.94 micro F-measure.

DISCUSSION

Approaching medical concept extraction and assertion classification through ML-based techniques has the advantage of easily adapting to new data sets and new medical informatics tasks. However, ML-based techniques perform best when optimal features are selected. By devising promising feature-selection techniques, the authors obtain results that outperform the current state of the art.

CONCLUSION

This paper presents two ML-based approaches for processing language in the clinical texts evaluated in the 2010 i2b2/VA challenge. By using novel feature-selection methods, the techniques presented in this paper are unique among the i2b2 participants.

摘要

目的

本文描述了两种自然语言处理技术任务:在临床文本中识别医学概念,以及对断言进行分类,这些断言表明存在、不存在或不确定医学问题。由于有如此多的资源可用于处理临床文本,因此人们有兴趣开发一种框架,在该框架中,可以针对两个感兴趣的任务最优地选择从这些资源中得出的特征。

材料和方法

作者使用了两种机器学习(ML)分类器:支持向量机(SVM)和条件随机场(CRF)。由于 SVM 和 CRF 可以对从临床文本和外部资源中提取的大量特征进行操作,因此作者提出了以下研究问题:需要选择哪些特征才能获得最佳结果?为此,作者设计了特征选择技术,这些技术大大减少了手动实验的次数并提高了性能。

结果

作者在 2010 年 i2b2/VA 挑战赛的数据上评估了他们的方法。概念提取的微 F1 值达到 79.59。断言分类的微 F1 值达到 93.94。

讨论

通过基于 ML 的技术来处理医学概念提取和断言分类具有易于适应新数据集和新医学信息学任务的优势。但是,只有在选择最佳特征时,基于 ML 的技术才能发挥最佳性能。通过设计有前途的特征选择技术,作者获得了优于当前最先进水平的结果。

结论

本文提出了两种基于 ML 的方法来处理 2010 年 i2b2/VA 挑战赛中评估的临床文本中的语言。通过使用新颖的特征选择方法,本文提出的技术在 i2b2 参与者中是独一无二的。

相似文献

1
A flexible framework for deriving assertions from electronic medical records.从电子病历中推导断言的灵活框架。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):568-73. doi: 10.1136/amiajnl-2011-000152. Epub 2011 Jul 1.
2
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
4
MITRE system for clinical assertion status classification.MITRE 临床断言状态分类系统。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):563-7. doi: 10.1136/amiajnl-2011-000164. Epub 2011 Apr 22.
7
A knowledge discovery and reuse pipeline for information extraction in clinical notes.临床笔记中信息抽取的知识发现和重用管道。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9. doi: 10.1136/amiajnl-2011-000302. Epub 2011 Jul 7.

引用本文的文献

2
Trustworthy assertion classification through prompting.通过提示进行可信断言分类。
J Biomed Inform. 2022 Aug;132:104139. doi: 10.1016/j.jbi.2022.104139. Epub 2022 Jul 8.
5
Classifying and Summarizing Information from Microblogs During Epidemics.疫情期间微博信息的分类与总结
Inf Syst Front. 2018;20(5):933-948. doi: 10.1007/s10796-018-9844-9. Epub 2018 Mar 20.
8
Learning relevance models for patient cohort retrieval.学习用于患者队列检索的相关性模型。
JAMIA Open. 2018 Oct;1(2):265-275. doi: 10.1093/jamiaopen/ooy010. Epub 2018 Sep 28.
10
Medical Question Answering for Clinical Decision Support.用于临床决策支持的医学问答
Proc ACM Int Conf Inf Knowl Manag. 2016 Oct;2016:297-306. doi: 10.1145/2983323.2983819.

本文引用的文献

1
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
8
Recent advances in natural language processing for biomedical applications.生物医学应用中自然语言处理的最新进展。
Int J Med Inform. 2006 Jun;75(6):413-7. doi: 10.1016/j.ijmedinf.2005.06.008. Epub 2005 Aug 31.
9
An ontology for cell types.一种细胞类型本体。
Genome Biol. 2005;6(2):R21. doi: 10.1186/gb-2005-6-2-r21. Epub 2005 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验