文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

浮游古菌的群落结构和功能:南海深度变化的影响。

Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

机构信息

State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, People's Republic of China.

出版信息

Microb Ecol. 2011 Oct;62(3):549-63. doi: 10.1007/s00248-011-9866-z. Epub 2011 May 20.


DOI:10.1007/s00248-011-9866-z
PMID:21597940
Abstract

Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

摘要

海洋泉古菌是海洋生态系统中广泛存在且丰富的微生物类群。本研究通过分析南海三个站位的表层、中层和深海浮游泉古菌 16S rRNA 基因、参与氨氧化的氨单加氧酶基因 amoA 和可能参与古菌 CO2 固定的生物素羧化酶基因 accA,研究了浮游泉古菌的丰度、多样性和分布。定量 PCR 分析表明,除了在表层区几乎不存在泉古菌 accA 基因外,泉古菌 amoA 和 accA 基因丰度与古菌和泉古菌 16S rRNA 基因丰度的变化趋势相似。从表层到深海区,泉古菌 amoA 基因与 16S rRNA 基因丰度的比值降低了约 2.6 倍,而泉古菌 accA 基因与海洋 I 群泉古菌 16S rRNA 基因或泉古菌 amoA 基因丰度的比值随深度增加而增加,表明泉古菌的代谢可能从表层到中层或深海区发生变化。16S rRNA 基因的变性梯度凝胶电泳谱显示,古菌群落结构存在深度分区。泉古菌 amoA 和 accA 基因的克隆文库显示出两个聚类:“浅层”聚类仅来自表层水,而“深层”聚类来自中层和/或深海水,表明浅层和深层海洋泉古菌之间可能存在生态位分化。总的来说,本研究结果表明南海泉古菌种群存在强烈的深度分区,并表明其群落结构和生态功能随深度的增加而发生变化。

相似文献

[1]
Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

Microb Ecol. 2011-5-20

[2]
Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.

Appl Environ Microbiol. 2011-8-26

[3]
Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

Appl Environ Microbiol. 2010-8-27

[4]
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.

Environ Microbiol. 2010-3-23

[5]
Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean.

Environ Microbiol. 2009-11-25

[6]
Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean.

Environ Microbiol. 2012-6-12

[7]
Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea).

ISME J. 2011-1-6

[8]
Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea.

ISME J. 2007-12

[9]
Population ecology of nitrifying archaea and bacteria in the Southern California Bight.

Environ Microbiol. 2010-2-18

[10]
Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic.

Nature. 2008-12-11

引用本文的文献

[1]
Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea.

iScience. 2022-4-29

[2]
Biogeographical Distribution and Community Assembly of Active Protistan Assemblages Along an Estuary to a Basin Transect of the Northern South China Sea.

Microorganisms. 2021-2-10

[3]
Simulation of Enhanced Growth of Marine Group II From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone.

Front Microbiol. 2020-9-11

[4]
Community differentiation of bacterioplankton in the epipelagic layer in the South China Sea.

Ecol Evol. 2018-4-19

[5]
Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass in Coral Reef Ecosystems.

Front Microbiol. 2018-1-25

[6]
Marine Group II Dominates Planktonic Archaea in Water Column of the Northeastern South China Sea.

Front Microbiol. 2017-6-15

[7]
Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench.

Front Microbiol. 2016-5-9

[8]
Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters.

ISME J. 2016-11

[9]
Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea.

BMC Genomics. 2015-3-20

[10]
Biogeography of Planktonic and Benthic Archaeal Communities in a Subtropical Eutrophic Estuary of China.

Microb Ecol. 2015-8

本文引用的文献

[1]
Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic Crenarchaeota.

Microb Biotechnol. 2010-7-9

[2]
Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea).

ISME J. 2011-1-6

[3]
Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.

Appl Environ Microbiol. 2010-9-24

[4]
Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.

Trends Microbiol. 2010-7-2

[5]
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.

Proc Natl Acad Sci U S A. 2010-4-26

[6]
Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea.

FEMS Microbiol Ecol. 2010-3-25

[7]
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.

Environ Microbiol. 2010-3-23

[8]
Population ecology of nitrifying archaea and bacteria in the Southern California Bight.

Environ Microbiol. 2010-2-18

[9]
Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean.

Environ Microbiol. 2009-11-25

[10]
Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

Environ Microbiol. 2009-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索