文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基伍湖(卢旺达-刚果民主共和国)表水层中氨氧化古菌和产甲烷菌的垂直分布。

Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

机构信息

Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.

出版信息

Appl Environ Microbiol. 2010 Oct;76(20):6853-63. doi: 10.1128/AEM.02864-09. Epub 2010 Aug 27.


DOI:10.1128/AEM.02864-09
PMID:20802065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2953034/
Abstract

Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.

摘要

2007 年 3 月,对基伍湖(卢旺达-刚果民主共和国)的四个分层盆地进行了采样,以研究浮游古菌的丰度、分布和潜在的生物地球化学作用。我们使用荧光原位杂交与催化报告沉积显微镜计数(CARD-FISH)、变性梯度凝胶电泳(DGGE)指纹图谱和氨氧化古菌的定量 PCR(qPCR)(海洋古菌群 1.1a 的 16S rRNA [MCG1]和氨单加氧酶亚基 A [amoA])。古菌丰度范围为总 DAPI(4',6-二脒基-2-苯基吲哚)计数的 1%至 4.5%,最大值出现在好氧-缺氧过渡带(约 50 米深)。浮游古菌群落的系统发育分析显示,crenarchaeotal 16S rRNA 基因序列的丰富度更高(鉴定的 28 个操作分类单元[OTU]中有 21 个[75%]),而 eurarchaeotal 的丰富度较低(7 个 OTU)。与王国 Euryarchaeota 相关的序列主要从缺氧水层中回收,并主要分为产甲烷菌(Methanosarcinales 和 Methanocellales)。反过来,crenarchaeal 生物型在整个采样的表水层(0 至 100 米深)中都有回收,并且在从好氧到缺氧水体的过渡过程中,它们的系统发育明显分离。因此,在缺氧的湖下层,crenarchaeotal OTU 主要归属于混杂的古菌群,而在好氧-缺氧过渡区和以上的 OTU 则属于 Crenarchaeota 组 1.1a 和 1.1b,这两个谱系包含了迄今为止大多数已知的氨氧化代表。亚硝酸盐和硝酸盐最大值的垂直分布以及 MCG1 16S rRNA 和 amoA 基因的拷贝数均表明,Crenarchaeota 可能参与了湖泊表水层中硝化过程。

相似文献

[1]
Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

Appl Environ Microbiol. 2010-8-27

[2]
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.

Environ Microbiol. 2010-3-23

[3]
Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian.

Environ Microbiol. 2008-11

[4]
Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes.

Environ Microbiol. 2009-3

[5]
The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

Environ Microbiol. 2008-11

[6]
Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

Appl Environ Microbiol. 2008-10

[7]
Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

Microb Ecol. 2011-5-20

[8]
High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study.

FEMS Microbiol Ecol. 2008-11

[9]
Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.

Appl Environ Microbiol. 2011-8-26

[10]
Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters.

World J Microbiol Biotechnol. 2015-5

引用本文的文献

[1]
The microbiology of Uganda's large freshwater lakes experiencing anthropogenic and climatic perturbations: why it matters-a review.

Proc Biol Sci. 2025-6

[2]
The role of anthropogenic influences on a tropical lake ecosystem and its surrounding catchment: a case study of Lake Sentani.

FEMS Microbiol Ecol. 2025-1-7

[3]
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.

Appl Environ Microbiol. 2019-3-22

[4]
Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments.

Front Microbiol. 2017-3-21

[5]
Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage.

ISME J. 2016-3

[6]
Vertical Distribution of Functional Potential and Active Microbial Communities in Meromictic Lake Kivu.

Microb Ecol. 2015-10

[7]
Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa).

Sci Rep. 2014-8-21

[8]
Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

PLoS One. 2014-5-12

[9]
amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China.

Front Microbiol. 2013-11-12

[10]
Tropical aquatic Archaea show environment-specific community composition.

PLoS One. 2013-9-25

本文引用的文献

[1]
High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific.

Environ Microbiol. 2010-4-19

[2]
Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean.

Environ Microbiol. 2009-11-25

[3]
Global ecological patterns in uncultured Archaea.

ISME J. 2009-10-22

[4]
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

Appl Environ Microbiol. 2009-10-2

[5]
Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.

Nature. 2009-10-15

[6]
Infrequent marine-freshwater transitions in the microbial world.

Trends Microbiol. 2009-9

[7]
Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

Environ Microbiol. 2009-9

[8]
Revising the nitrogen cycle in the Peruvian oxygen minimum zone.

Proc Natl Acad Sci U S A. 2009-3-24

[9]
Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes.

Environ Microbiol. 2009-3

[10]
Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation.

Environ Microbiol. 2009-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索