Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.
Appl Environ Microbiol. 2010 Oct;76(20):6853-63. doi: 10.1128/AEM.02864-09. Epub 2010 Aug 27.
Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.
2007 年 3 月,对基伍湖(卢旺达-刚果民主共和国)的四个分层盆地进行了采样,以研究浮游古菌的丰度、分布和潜在的生物地球化学作用。我们使用荧光原位杂交与催化报告沉积显微镜计数(CARD-FISH)、变性梯度凝胶电泳(DGGE)指纹图谱和氨氧化古菌的定量 PCR(qPCR)(海洋古菌群 1.1a 的 16S rRNA [MCG1]和氨单加氧酶亚基 A [amoA])。古菌丰度范围为总 DAPI(4',6-二脒基-2-苯基吲哚)计数的 1%至 4.5%,最大值出现在好氧-缺氧过渡带(约 50 米深)。浮游古菌群落的系统发育分析显示,crenarchaeotal 16S rRNA 基因序列的丰富度更高(鉴定的 28 个操作分类单元[OTU]中有 21 个[75%]),而 eurarchaeotal 的丰富度较低(7 个 OTU)。与王国 Euryarchaeota 相关的序列主要从缺氧水层中回收,并主要分为产甲烷菌(Methanosarcinales 和 Methanocellales)。反过来,crenarchaeal 生物型在整个采样的表水层(0 至 100 米深)中都有回收,并且在从好氧到缺氧水体的过渡过程中,它们的系统发育明显分离。因此,在缺氧的湖下层,crenarchaeotal OTU 主要归属于混杂的古菌群,而在好氧-缺氧过渡区和以上的 OTU 则属于 Crenarchaeota 组 1.1a 和 1.1b,这两个谱系包含了迄今为止大多数已知的氨氧化代表。亚硝酸盐和硝酸盐最大值的垂直分布以及 MCG1 16S rRNA 和 amoA 基因的拷贝数均表明,Crenarchaeota 可能参与了湖泊表水层中硝化过程。
Environ Microbiol. 2010-3-23
Environ Microbiol. 2008-11
Appl Environ Microbiol. 2008-10
FEMS Microbiol Ecol. 2008-11
Appl Environ Microbiol. 2011-8-26
World J Microbiol Biotechnol. 2015-5
Appl Environ Microbiol. 2019-3-22
Front Microbiol. 2017-3-21
Front Microbiol. 2013-11-12
PLoS One. 2013-9-25
Environ Microbiol. 2009-11-25
ISME J. 2009-10-22
Trends Microbiol. 2009-9
Environ Microbiol. 2009-9
Proc Natl Acad Sci U S A. 2009-3-24
Environ Microbiol. 2009-4