Suppr超能文献

东海透光带和上层中层带海洋 I 组古菌的小生境分区。

Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.

机构信息

State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, People's Republic of China.

出版信息

Appl Environ Microbiol. 2011 Nov;77(21):7469-78. doi: 10.1128/AEM.00294-11. Epub 2011 Aug 26.

Abstract

Marine group I Crenarchaeota (MGI) represents a ubiquitous and numerically predominant microbial population in marine environments. An understanding of the spatial dynamics of MGI and its controlling mechanisms is essential for an understanding of the role of MGI in energy and element cycling in the ocean. In the present study, we investigated the diversity and abundance of MGI in the East China Sea (ECS) by analysis of crenarchaeal 16S rRNA gene, the ammonia monooxygenase gene amoA, and the biotin carboxylase gene accA. Quantitative PCR analyses revealed that these genes were higher in abundance in the mesopelagic than in the euphotic zone. In addition, the crenarchaeal amoA gene was positively correlated with the copy number of the MGI 16S rRNA gene, suggesting that most of the MGI in the ECS are nitrifiers. Furthermore, the ratios of crenarchaeal accA to amoA or to MGI 16S rRNA genes increased from the euphotic to the mesopelagic zone, suggesting that the role of MGI in carbon cycling may change from the epipelagic to the mesopelagic zones. Denaturing gradient gel electrophoretic profiling of the 16S rRNA genes revealed depth partitioning in MGI community structures. Clone libraries of the crenarchaeal amoA and accA genes showed both "shallow" and "deep" groups, and their relative abundances varied in the water column. Ecotype simulation analysis revealed that MGI in the upper ocean could diverge into special ecotypes associated with depth to adapt to the light gradient across the water column. Overall, our results showed niche partitioning of the MGI population and suggested a shift in their ecological functions between the euphotic and mesopelagic zones of the ECS.

摘要

海洋 I 群古菌(MGI)是海洋环境中普遍存在且数量占优势的微生物种群。了解 MGI 的空间动态及其控制机制对于理解 MGI 在海洋能量和元素循环中的作用至关重要。本研究通过分析古菌 16S rRNA 基因、氨单加氧酶基因 amoA 和生物素羧化酶基因 accA,研究了东海 MGI 的多样性和丰度。定量 PCR 分析显示,这些基因在中层水的丰度高于透光带。此外,古菌 amoA 基因与 MGI 16S rRNA 基因的拷贝数呈正相关,表明东海的大多数 MGI 都是硝化菌。此外,从透光带到中层水,古菌 accA 与 amoA 或 MGI 16S rRNA 基因的比值增加,表明 MGI 在碳循环中的作用可能从表水带到中层水带发生变化。16S rRNA 基因的变性梯度凝胶电泳谱显示 MGI 群落结构存在深度分区。古菌 amoA 和 accA 基因的克隆文库显示出“浅层”和“深层”两个群组,它们在水柱中的相对丰度不同。生态型模拟分析表明,上层海洋中的 MGI 可能会分化成与深度相关的特殊生态型,以适应水柱中的光照梯度。总的来说,我们的研究结果表明 MGI 种群存在生态位分化,并表明它们在东海透光带和中层水带之间的生态功能发生了转变。

相似文献

1
Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.
Appl Environ Microbiol. 2011 Nov;77(21):7469-78. doi: 10.1128/AEM.00294-11. Epub 2011 Aug 26.
2
Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.
Microb Ecol. 2011 Oct;62(3):549-63. doi: 10.1007/s00248-011-9866-z. Epub 2011 May 20.
3
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
Environ Microbiol. 2010 Jul;12(7):1989-2006. doi: 10.1111/j.1462-2920.2010.02205.x. Epub 2010 Mar 23.
5
Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean.
Environ Microbiol. 2010 Mar;12(3):679-88. doi: 10.1111/j.1462-2920.2009.02108.x. Epub 2009 Nov 25.
6
Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes.
Environ Microbiol. 2009 Mar;11(3):687-99. doi: 10.1111/j.1462-2920.2008.01846.x. Epub 2009 Jan 15.
7
Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian.
Environ Microbiol. 2008 Nov;10(11):2991-3001. doi: 10.1111/j.1462-2920.2008.01761.x. Epub 2008 Sep 10.
8
Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic.
Nature. 2008 Dec 11;456(7223):788-91. doi: 10.1038/nature07535. Epub 2008 Nov 26.
9
Phylogenetic diversity of planktonic archaea in the estuarine region of East China Sea.
Microbiol Res. 2007;162(1):26-36. doi: 10.1016/j.micres.2006.03.007. Epub 2006 Aug 17.
10
Population ecology of nitrifying archaea and bacteria in the Southern California Bight.
Environ Microbiol. 2010 May;12(5):1282-92. doi: 10.1111/j.1462-2920.2010.02172.x. Epub 2010 Feb 18.

引用本文的文献

2
Phylotype resolved spatial variation and association patterns of planktonic in eastern Chinese marginal seas.
Mar Life Sci Technol. 2023 Apr 7;5(2):257-270. doi: 10.1007/s42995-023-00169-y. eCollection 2023 May.
6
Archaeal Sources of Intact Membrane Lipid Biomarkers in the Oxygen Deficient Zone of the Eastern Tropical South Pacific.
Front Microbiol. 2019 Apr 11;10:765. doi: 10.3389/fmicb.2019.00765. eCollection 2019.
7
Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific.
Front Microbiol. 2017 Jun 30;8:1247. doi: 10.3389/fmicb.2017.01247. eCollection 2017.
8
Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment.
Front Microbiol. 2017 Jun 21;8:1153. doi: 10.3389/fmicb.2017.01153. eCollection 2017.
9
Lipids as paleomarkers to constrain the marine nitrogen cycle.
Environ Microbiol. 2017 Jun;19(6):2119-2132. doi: 10.1111/1462-2920.13682. Epub 2017 Feb 28.
10
Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China.
Front Microbiol. 2015 Oct 27;6:1180. doi: 10.3389/fmicb.2015.01180. eCollection 2015.

本文引用的文献

1
Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.
Microb Ecol. 2011 Oct;62(3):549-63. doi: 10.1007/s00248-011-9866-z. Epub 2011 May 20.
3
Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing.
Mol Ecol. 2011 Jan;20(2):258-74. doi: 10.1111/j.1365-294X.2010.04932.x. Epub 2010 Dec 9.
4
Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean.
Nat Rev Microbiol. 2010 Aug;8(8):593-9. doi: 10.1038/nrmicro2386. Epub 2010 Jul 5.
5
Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
Trends Microbiol. 2010 Aug;18(8):331-40. doi: 10.1016/j.tim.2010.06.003. Epub 2010 Jul 2.
6
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8818-23. doi: 10.1073/pnas.0913533107. Epub 2010 Apr 26.
7
High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific.
Environ Microbiol. 2010 Sep;12(9):2450-65. doi: 10.1111/j.1462-2920.2010.02218.x. Epub 2010 Apr 19.
8
Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
Environ Microbiol. 2010 Jul;12(7):1989-2006. doi: 10.1111/j.1462-2920.2010.02205.x. Epub 2010 Mar 23.
9
Evolutionary divergence and biogeography of sympatric niche-differentiated bacterial populations.
ISME J. 2010 Apr;4(4):488-97. doi: 10.1038/ismej.2009.146. Epub 2010 Jan 7.
10
Hydrography shapes bacterial biogeography of the deep Arctic Ocean.
ISME J. 2010 Apr;4(4):564-76. doi: 10.1038/ismej.2009.134. Epub 2009 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验