Chow Brian Y, Chuong Amy S, Klapoetke Nathan C, Boyden Edward S
Synthetic Neurobiology Group, The Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Methods Enzymol. 2011;497:425-43. doi: 10.1016/B978-0-12-385075-1.00018-4.
The life and operation of cells involve many physiological processes that take place over fast timescales of milliseconds to minutes. Genetically encoded technologies for driving or suppressing specific fast physiological processes in intact cells, perhaps embedded within intact tissues in living organisms, are critical for the ability to understand how these physiological processes contribute to emergent cellular and organismal functions and behaviors. Such "synthetic physiology" tools are often incredibly complex molecular machines, in part because they must operate at high speeds, without causing side effects. We here explore how synthetic physiology molecules can be identified and deployed in cells, and how the physiology of these molecules in cellular contexts can be assessed and optimized. For concreteness, we discuss these methods in the context of the "optogenetic" light-gated ion channels and pumps that we have developed over the past few years as synthetic physiology tools and widely disseminated for use in neuroscience for probing the role of specific brain cell types in neural computations, behaviors, and pathologies. We anticipate that some of the insights revealed here may be of general value for the field of synthetic physiology, as they raise issues that will be of importance for the development and use of high-performance, high-speed, side-effect free physiological control tools in heterologous expression systems.
细胞的生命活动和运作涉及许多生理过程,这些过程发生在从毫秒到分钟的快速时间尺度上。在完整细胞中驱动或抑制特定快速生理过程的基因编码技术,或许是嵌入活生物体的完整组织中的,对于理解这些生理过程如何促成细胞和机体的新兴功能及行为的能力而言至关重要。此类“合成生理学”工具往往是极其复杂的分子机器,部分原因在于它们必须高速运转且不产生副作用。我们在此探讨如何在细胞中识别并部署合成生理学分子,以及如何在细胞环境中评估和优化这些分子的生理学特性。具体而言,我们将在“光遗传学”光控离子通道和泵的背景下讨论这些方法,这些是我们在过去几年中开发的合成生理学工具,并已广泛传播用于神经科学,以探究特定脑细胞类型在神经计算、行为和病理学中的作用。我们预计,这里揭示的一些见解可能对合成生理学领域具有普遍价值,因为它们提出了一些对于在异源表达系统中开发和使用高性能、高速、无副作用的生理控制工具至关重要的问题。