Lehrbereich Mikrobielle Genetik, Eberhard Karls Universität Tübingen, Waldhäuser Strasse 70/8, 72076 Tübingen, Germany.
J Bacteriol. 2011 Jul;193(14):3525-36. doi: 10.1128/JB.00264-11. Epub 2011 May 20.
N-Acetylglucosamine (GlcNAc) is the most abundant carbon-nitrogen biocompound on earth and has been shown to be an important source of nutrients for both catabolic and anabolic purposes in Bacillus species. In this work we show that the GntR family regulator YvoA of Bacillus subtilis serves as a negative transcriptional regulator of GlcNAc catabolism gene expression. YvoA represses transcription by binding a 16-bp sequence upstream of nagP encoding the GlcNAc-specific EIIBC component of the sugar phosphotransferase system involved in GlcNAc transport and phosphorylation, as well as another very similar 16-bp sequence upstream of the nagAB-yvoA locus, wherein nagA codes for N-acetylglucosamine-6-phosphate deacetylase and nagB codes for the glucosamine-6-phosphate (GlcN-6-P) deaminase. In vitro experiments demonstrated that GlcN-6-P acts as an inhibitor of YvoA DNA-binding activity, as occurs for its Streptomyces ortholog, DasR. Interestingly, we observed that the expression of nag genes was still activated upon addition of GlcNAc in a ΔyvoA mutant background, suggesting the existence of an auxiliary transcriptional control instance. Initial computational prediction of the YvoA regulon showed a distribution of YvoA binding sites limited to nag genes and therefore suggests renaming YvoA to NagR, for N-acetylglucosamine utilization regulator. Whole-transcriptome studies showed significant repercussions of nagR deletion for several major B. subtilis regulators, probably indirectly due to an excess of the crucial molecules acetate, ammonia, and fructose-6-phosphate, resulting from complete hydrolysis of GlcNAc. We discuss a model deduced from NagR-mediated gene expression, which highlights clear connections with pathways for GlcNAc-containing polymer biosynthesis and adaptation to growth under oxygen limitation.
N-乙酰葡萄糖胺(GlcNAc)是地球上最丰富的碳氮生物化合物,已被证明是芽孢杆菌属中用于分解代谢和合成代谢目的的重要营养物质来源。在这项工作中,我们表明枯草芽孢杆菌的 GntR 家族调节剂 YvoA 作为 GlcNAc 分解代谢基因表达的负转录调节剂。YvoA 通过结合参与 GlcNAc 运输和磷酸化的糖磷酸转移酶系统中 GlcNAc 特异性 EIIBC 成分编码基因 nagP 上游的 16 个碱基对序列以及 nagAB-yvoA 基因座上游的另一个非常相似的 16 个碱基对序列来抑制转录,其中 nagA 编码 N-乙酰葡萄糖胺-6-磷酸脱乙酰酶,而 nagB 编码葡萄糖胺-6-磷酸(GlcN-6-P)脱氨酶。体外实验表明,GlcN-6-P 作为其链霉菌直系同源物 DasR 的抑制剂,抑制 YvoA 的 DNA 结合活性。有趣的是,我们观察到在ΔyvoA 突变体背景下添加 GlcNAc 时 nag 基因的表达仍被激活,这表明存在辅助转录控制实例。YvoA 调控子的初始计算预测表明,YvoA 结合位点的分布仅限于 nag 基因,因此建议将 YvoA 重新命名为 NagR,用于 N-乙酰葡萄糖胺利用调节剂。全转录组研究表明,nagR 缺失对几个主要枯草芽孢杆菌调节剂有重大影响,可能是由于 GlcNAc 完全水解导致关键分子乙酸盐、氨和果糖-6-磷酸过量所致。我们讨论了一个由 NagR 介导的基因表达模型,该模型突出了与含 GlcNAc 聚合物生物合成途径和对低氧限制下生长的适应之间的明显联系。