Suppr超能文献

枯草芽孢杆菌 N-乙酰葡萄糖胺利用调控因子 NagR 的调控网络。

Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis.

机构信息

Lehrbereich Mikrobielle Genetik, Eberhard Karls Universität Tübingen, Waldhäuser Strasse 70/8, 72076 Tübingen, Germany.

出版信息

J Bacteriol. 2011 Jul;193(14):3525-36. doi: 10.1128/JB.00264-11. Epub 2011 May 20.

Abstract

N-Acetylglucosamine (GlcNAc) is the most abundant carbon-nitrogen biocompound on earth and has been shown to be an important source of nutrients for both catabolic and anabolic purposes in Bacillus species. In this work we show that the GntR family regulator YvoA of Bacillus subtilis serves as a negative transcriptional regulator of GlcNAc catabolism gene expression. YvoA represses transcription by binding a 16-bp sequence upstream of nagP encoding the GlcNAc-specific EIIBC component of the sugar phosphotransferase system involved in GlcNAc transport and phosphorylation, as well as another very similar 16-bp sequence upstream of the nagAB-yvoA locus, wherein nagA codes for N-acetylglucosamine-6-phosphate deacetylase and nagB codes for the glucosamine-6-phosphate (GlcN-6-P) deaminase. In vitro experiments demonstrated that GlcN-6-P acts as an inhibitor of YvoA DNA-binding activity, as occurs for its Streptomyces ortholog, DasR. Interestingly, we observed that the expression of nag genes was still activated upon addition of GlcNAc in a ΔyvoA mutant background, suggesting the existence of an auxiliary transcriptional control instance. Initial computational prediction of the YvoA regulon showed a distribution of YvoA binding sites limited to nag genes and therefore suggests renaming YvoA to NagR, for N-acetylglucosamine utilization regulator. Whole-transcriptome studies showed significant repercussions of nagR deletion for several major B. subtilis regulators, probably indirectly due to an excess of the crucial molecules acetate, ammonia, and fructose-6-phosphate, resulting from complete hydrolysis of GlcNAc. We discuss a model deduced from NagR-mediated gene expression, which highlights clear connections with pathways for GlcNAc-containing polymer biosynthesis and adaptation to growth under oxygen limitation.

摘要

N-乙酰葡萄糖胺(GlcNAc)是地球上最丰富的碳氮生物化合物,已被证明是芽孢杆菌属中用于分解代谢和合成代谢目的的重要营养物质来源。在这项工作中,我们表明枯草芽孢杆菌的 GntR 家族调节剂 YvoA 作为 GlcNAc 分解代谢基因表达的负转录调节剂。YvoA 通过结合参与 GlcNAc 运输和磷酸化的糖磷酸转移酶系统中 GlcNAc 特异性 EIIBC 成分编码基因 nagP 上游的 16 个碱基对序列以及 nagAB-yvoA 基因座上游的另一个非常相似的 16 个碱基对序列来抑制转录,其中 nagA 编码 N-乙酰葡萄糖胺-6-磷酸脱乙酰酶,而 nagB 编码葡萄糖胺-6-磷酸(GlcN-6-P)脱氨酶。体外实验表明,GlcN-6-P 作为其链霉菌直系同源物 DasR 的抑制剂,抑制 YvoA 的 DNA 结合活性。有趣的是,我们观察到在ΔyvoA 突变体背景下添加 GlcNAc 时 nag 基因的表达仍被激活,这表明存在辅助转录控制实例。YvoA 调控子的初始计算预测表明,YvoA 结合位点的分布仅限于 nag 基因,因此建议将 YvoA 重新命名为 NagR,用于 N-乙酰葡萄糖胺利用调节剂。全转录组研究表明,nagR 缺失对几个主要枯草芽孢杆菌调节剂有重大影响,可能是由于 GlcNAc 完全水解导致关键分子乙酸盐、氨和果糖-6-磷酸过量所致。我们讨论了一个由 NagR 介导的基因表达模型,该模型突出了与含 GlcNAc 聚合物生物合成途径和对低氧限制下生长的适应之间的明显联系。

相似文献

10
Multiple allosteric effectors control the affinity of DasR for its target sites.多种变构效应物控制DasR对其靶位点的亲和力。
Biochem Biophys Res Commun. 2015 Aug 14;464(1):324-9. doi: 10.1016/j.bbrc.2015.06.152. Epub 2015 Jun 26.

引用本文的文献

2
Bacteriophage resistance evolution in a honey bee pathogen.蜜蜂病原体中噬菌体抗性的进化
bioRxiv. 2025 Jan 31:2024.07.09.602782. doi: 10.1101/2024.07.09.602782.
6
Silent Genes: Antimicrobial Resistance and Antibiotic Production.沉默基因:抗微生物药物耐药性与抗生素产生。
Pol J Microbiol. 2021 Dec;70(4):421-429. doi: 10.33073/pjm-2021-040. Epub 2021 Dec 23.
9
Chitinases of : Phylogeny, Modular Structure, and Applied Potentials.几丁质酶:系统发育、模块化结构及应用潜力
Front Microbiol. 2020 Jan 14;10:3032. doi: 10.3389/fmicb.2019.03032. eCollection 2019.

本文引用的文献

1
The biofilm matrix.生物膜基质。
Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2.
9
Phylogeny.fr: robust phylogenetic analysis for the non-specialist.Phylogeny.fr:面向非专业人士的强大系统发育分析工具。
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9. doi: 10.1093/nar/gkn180. Epub 2008 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验