Suppr超能文献

自然场景中动物快速分类的关键视觉特征。

Key visual features for rapid categorization of animals in natural scenes.

作者信息

Delorme Arnaud, Richard Ghislaine, Fabre-Thorpe Michele

机构信息

Université de Toulouse, Université Paul Sabatier, Centre de Recherche Cerveau et Cognition Toulouse, France.

出版信息

Front Psychol. 2010 Jun 23;1:21. doi: 10.3389/fpsyg.2010.00021. eCollection 2010.

Abstract

In speeded categorization tasks, decisions could be based on diagnostic target features or they may need the activation of complete representations of the object. Depending on task requirements, the priming of feature detectors through top-down expectation might lower the threshold of selective units or speed up the rate of information accumulation. In the present paper, 40 subjects performed a rapid go/no-go animal/non-animal categorization task with 400 briefly flashed natural scenes to study how performance depends on physical scene characteristics, target configuration, and the presence or absence of diagnostic animal features. Performance was evaluated both in terms of accuracy and speed and d' curves were plotted as a function of reaction time (RT). Such d' curves give an estimation of the processing dynamics for studied features and characteristics over the entire subject population. Global image characteristics such as color and brightness do not critically influence categorization speed, although they slightly influence accuracy. Global critical factors include the presence of a canonical animal posture and animal/background size ratio suggesting the role of coarse global form. Performance was best for both accuracy and speed, when the animal was in a typical posture and when it occupied about 20-30% of the image. The presence of diagnostic animal features was another critical factor. Performance was significantly impaired both in accuracy (drop 3.3-7.5%) and speed (median RT increase 7-16 ms) when diagnostic animal parts (eyes, mouth, and limbs) were missing. Such animal features were shown to influence performance very early when only 15-25% of the response had been produced. In agreement with other experimental and modeling studies, our results support fast diagnostic recognition of animals based on key intermediate features and priming based on the subject's expertise.

摘要

在快速分类任务中,决策可以基于诊断性目标特征,也可能需要激活物体的完整表征。根据任务要求,通过自上而下的期望对特征检测器进行启动,可能会降低选择性单元的阈值或加快信息积累的速度。在本文中,40名受试者对400个短暂闪现的自然场景执行了快速的“是/否”动物/非动物分类任务,以研究表现如何取决于物理场景特征、目标配置以及诊断性动物特征的有无。从准确性和速度两方面对表现进行评估,并将d'曲线绘制为反应时间(RT)的函数。这样的d'曲线给出了在整个受试群体中所研究特征和特性的处理动态估计。诸如颜色和亮度等全局图像特征虽然对分类准确性有轻微影响,但对分类速度并无关键影响。全局关键因素包括标准动物姿势的存在以及动物/背景尺寸比例,这表明了粗略全局形状的作用。当动物处于典型姿势且占图像约20 - 30%时,准确性和速度方面的表现均最佳。诊断性动物特征的存在是另一个关键因素。当诊断性动物部位(眼睛、嘴巴和四肢)缺失时,准确性(下降3.3 - 7.5%)和速度(中位反应时间增加7 - 16毫秒)均显著受损。当仅产生15 - 25%的反应时,此类动物特征就已被证明对表现有非常早期的影响。与其他实验和建模研究一致,我们的结果支持基于关键中间特征对动物进行快速诊断识别以及基于受试者专业知识的启动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69aa/3095379/4210502dc986/fpsyg-01-00021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验