Magharious Mark M, D'Onofrio Philippe M, Koeberle Paulo D
Department of Surgery, University of Toronto, Ontario, Canada.
J Vis Exp. 2011 May 12(51):2241. doi: 10.3791/2241.
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS (1-4). This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve (5-7) or injecting vectors into their target, the superior colliculus (8). This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy (9-11). RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis.
视网膜神经节细胞(RGCs)是中枢神经系统神经元,它们通过视神经将视网膜的视觉信息输出到大脑。视神经可在眼眶内触及并完全横断(轴突切断),切断整个RGC群体的轴突。视神经横断是成年中枢神经系统中凋亡性神经元细胞死亡的一种可重复模型(1-4)。该模型特别有吸引力,因为眼球的玻璃体腔充当向视网膜给药的囊,允许通过眼内注射进行实验操作。化学物质通过玻璃体液的扩散确保它们作用于整个RGC群体。此外,通过将短干扰RNA(siRNAs)、质粒或病毒载体应用于视神经的切断端(5-7)或将载体注射到它们的靶标上丘(8),可以选择性地转染RGCs。这使研究人员能够在所需的神经元群体中研究凋亡机制,而不会对其他旁观者神经元或周围神经胶质细胞产生混杂影响。另一个好处是损伤后细胞存活量化的简便性和准确性。视网膜是一个扁平的分层组织,RGCs位于最内层,即神经节细胞层。在轴突切断时,通过将荧光示踪剂(3%荧光金)应用于视神经的切断端,或在轴突切断前一周将示踪剂注射到上丘(RGC靶标)中,可以随时间追踪RGCs的存活情况。示踪剂被逆行运输,标记整个RGC群体。由于神经节细胞层是单层(一个细胞厚),RGC密度可以在平铺的组织中进行量化,而无需进行体视学分析。视神经横断导致90%的受损RGCs在轴突切断后14天内发生凋亡性死亡(9-11)。RGC凋亡具有特征性的时间进程,即细胞死亡在轴突切断后延迟3-4天,之后细胞迅速退化。这为针对凋亡相关途径的实验操作提供了一个时间窗口。