Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
J Mol Biol. 2011 Jul 15;410(3):447-60. doi: 10.1016/j.jmb.2011.05.016. Epub 2011 May 17.
The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a k(cat)/K(m) of 6.0 × 10(5) M(-1) s(-1). Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.
尿酸的氧化分解代谢产生 5-羟异尿酸(HIU),它进一步被两种酶——HIU 水解酶和 2-氧代-4-羟基-4-羧基-5-脲基咪唑啉脱羧酶——降解为(S)-别嘌醇。后两种反应的中间体 HIU 和 2-氧代-4-羟基-4-羧基-5-脲基咪唑啉在溶液中不稳定,非立体特异性地分解为别嘌醇。此外,别嘌醇在生理 pH 值下会发生非酶促外消旋化。由于别嘌醇的进一步分解由别嘌醇酶催化,而别嘌醇酶特异性地作用于(S)-别嘌醇,因此尿酸的完全和有效分解代谢需要别嘌醇外消旋酶。在这项工作中,我们对肺炎克雷伯氏菌(Klebsiella pneumoniae)中的别嘌醇外消旋酶(KpHpxA)的结构和活性进行了表征。除了用硒代甲硫氨酸单波长反常散射法解析的未配体结构外,还呈现了 C79S/C184S KpHpxA 与别嘌醇和 5-乙酰基尿嘧啶复合物的结构。这些结构揭示了活性位点的几个重要特征,包括一个阴离子空穴和一个极性结合口袋,与别嘌醇的脲基尾部相互作用,用于控制尿嘧啶环的取向。KpHpxA 能够互变别嘌醇的(R)-和(S)-对映异构体,对 KpHpxA 的稳态动力学分析得出 k(cat)/K(m) 值为 6.0×10(5) M(-1) s(-1)。将活性位点的两个半胱氨酸(Cys79 或 Cys184)中的任何一个突变为丝氨酸都会使该酶失活。所提供的数据为该酶的活性和底物特异性提供了新的见解,并使我们能够提出与在天门冬氨酸/谷氨酸家族的其他成员中观察到的双碱基机制一致的催化机制。