Suppr超能文献

用于颈动脉壁识别、分割和内膜中层厚度测量的“基于CALSFOAM完成的自动局部统计一阶绝对矩”:在一个300例患者数据库上的验证和基准测试

CALSFOAM-completed automated local statistics based first order absolute moment" for carotid wall recognition, segmentation and IMT measurement: validation and benchmarking on a 300 patient database.

作者信息

Molinari F, Liboni W, Pantziaris M, Suri J S

机构信息

Biolab, Department of Electronics, Politecnico di Torino, Turin, Italy.

出版信息

Int Angiol. 2011 Jun;30(3):227-41.

Abstract

AIM

In this work we present a novel methodology (called CALSFOAM) for the automated segmentation of ultrasound carotid images and intima-media thickness (IMT) measurement. CALSFOAM was developed in order to overcome limitations of a previously developed snake-based technique.

METHODS

CALSFOAM consists of two stages: Stage-I is an automatic recognition of the carotid artery system in an image frame and Stage-II is a combination of segmentation and IMT measurement sub-system. Stage-I is performed by using local statistics and by automatically tracing the profile of the distal adventitia. Stage-II takes the traced adventitia boundary and builds an ROI for distal wall segmentation that uses a first order absolute moment (FOAM) technique. CALSFOAM was benchmarked against our previous snake based technique and validated on a 300-image multi-institutional dataset.

RESULTS

CALSFOAM's lumen-intima (LI) segmentation error was 0.049±0.039 mm, the media-adventitia (MA) error was 0.088±0.054 mm; the IMT measurement bias was 0.125±0.103 mm. To reduce CALSFOAM error, we adopted a GREEDY approach for fusing the boundaries from the two techniques and obtained LI and MA errors equal to 0.02±0.014 mm, 0.023±0.013 mm, and an IMT bias of 0.074±0.068 mm.

CONCLUSION

Even though CALSFOAM's performance was lower than snake-based segmentation techniques, it helped in avoiding possible inaccuracies of snakes and its parameter sensitivities. The very accurate performance obtained by the GREEDY approach demonstrated that the two techniques could be considered as complementary.

摘要

目的

在本研究中,我们提出了一种用于超声颈动脉图像自动分割和内膜中层厚度(IMT)测量的新方法(称为CALSFOAM)。开发CALSFOAM是为了克服先前基于蛇形技术的局限性。

方法

CALSFOAM由两个阶段组成:第一阶段是在图像帧中自动识别颈动脉系统,第二阶段是分割和IMT测量子系统的组合。第一阶段通过使用局部统计数据并自动追踪远端外膜轮廓来执行。第二阶段采用追踪到的外膜边界并构建用于远端壁分割的感兴趣区域(ROI),该区域使用一阶绝对矩(FOAM)技术。CALSFOAM与我们先前基于蛇形的技术进行了基准测试,并在一个包含300幅图像的多机构数据集中进行了验证。

结果

CALSFOAM的管腔-内膜(LI)分割误差为0.049±0.039毫米,中膜-外膜(MA)误差为0.088±0.054毫米;IMT测量偏差为0.125±0.103毫米。为了减少CALSFOAM误差,我们采用了一种贪婪方法来融合两种技术的边界,得到LI和MA误差分别为0.02±0.014毫米、0.023±0.013毫米,IMT偏差为0.074±0.068毫米。

结论

尽管CALSFOAM的性能低于基于蛇形的分割技术,但它有助于避免蛇形技术可能存在的不准确之处及其参数敏感性。通过贪婪方法获得的非常准确的性能表明,这两种技术可以被视为互补的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验