Suppr超能文献

基于注意力机制的U-Net深度学习模型用于颈动脉超声斑块分割以进行中风风险分层:一种人工智能范式

Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm.

作者信息

Jain Pankaj K, Dubey Abhishek, Saba Luca, Khanna Narender N, Laird John R, Nicolaides Andrew, Fouda Mostafa M, Suri Jasjit S, Sharma Neeraj

机构信息

School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.

Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India.

出版信息

J Cardiovasc Dev Dis. 2022 Sep 27;9(10):326. doi: 10.3390/jcdd9100326.

Abstract

Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.

摘要

中风和心血管疾病(CVD)对全球人口有重大影响。此类事件的早期检测可能会预防死亡负担和昂贵的手术费用。传统方法既不自动化,临床准确性也不高。基于人工智能的早期自动检测和预测CVD及中风严重程度的方法至关重要。本研究提出了一种基于注意力通道的UNet深度学习(DL)模型,该模型可识别颈内动脉(ICA)和颈总动脉(CCA)图像中的颈动脉斑块。我们的实验包括来自英国的970张ICA图像、来自日本糖尿病患者的379张CCA图像以及来自中国香港绝经后女性的300张CCA图像。我们将两组CCA图像合并,形成了一个包含679张图像的综合数据库。对679张CCA图像应用了旋转变换技术,使实验数据库翻倍。采用交叉验证K5(80%训练:20%测试)协议来确定准确性。将注意力UNet模型的结果与UNet、UNet++和UNet3P模型进行基准比较。视觉斑块分割显示,与其他三个模型相比,注意力UNet的结果有所改善。注意力UNet的相关系数(CC)值为0.96,而UNet、UNet++和UNet3P模型的CC值分别为0.93、0.96和0.92。同样,注意力UNet的AUC值为0.97,其他模型的AUC值分别为0.964、0.966和0.965。总之,注意力UNet模型有助于分割使用其他方法难以诊断的非常明亮和模糊的斑块图像。此外,我们还展示了一项关于中风风险评估的多民族、多中心、无种族偏见的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1f/9604424/cb826907f2ab/jcdd-09-00326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验