Suppr超能文献

海洋嗜热菌耐热海藻糖酶的分子基础:超耐热海藻糖酶的 X 射线结构及分子动力学模拟。

Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations.

机构信息

Institute of Physics of São Carlos, University of São Paulo, Avenida Trabalhador São-Carlense, 400, CEP 13560-970 São Carlos, SP, Brazil.

出版信息

J Phys Chem B. 2011 Jun 23;115(24):7940-9. doi: 10.1021/jp200330z. Epub 2011 May 27.

Abstract

Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 Å resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting β-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.

摘要

糖苷水解酶能够切断多糖的糖苷键,具有重要的工业和生物技术应用价值。由于后期应用的需求,人们通常希望糖苷水解酶在高温和极端 pH 值等极端环境条件下保持稳定性和活性。在这里,我们展示了来自嗜热海洋红杆菌(Rhodothermus marinus)的岩藻聚糖酶(RmLamR)的 X 射线结构,分辨率为 1.95 Å,并进行了旨在理解这类酶热稳定性的分子基础的分子动力学模拟研究。与大多数耐热蛋白一样,RmLamR 含有相对较多的盐桥,这些盐桥不是随机分布在结构上的。相反,它们形成簇,将催化域的β-折叠连接起来。然而,并非所有盐桥都有利于蛋白质的热稳定性:电荷相互作用贯穿酶的疏水区实际上有助于通过促进水渗透到疏水区来破坏结构,就像在嗜温酶的情况下一样。此外,我们证明了侧链的移动性在每类酶中受到不同的干扰。在嗜温岩藻聚糖酶中,围绕催化裂缝的环残基的侧链获得了流动性,并在高温下阻塞了活性部位。相比之下,耐热岩藻聚糖酶保留了其活性部位的灵活性,即使在高温下,活性部位裂缝仍然可以识别多糖底物。目前的结果为盐桥和活性部位灵活性在蛋白质热稳定性中的作用提供了结构上的见解,可能与其他类别的蛋白质(特别是糖苷水解酶)有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验