Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
Nat Genet. 2011 May 29;43(7):656-62. doi: 10.1038/ng.846.
Although experimental and theoretical efforts have been applied to globally map genetic interactions, we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we i, quantitatively measured genetic interactions between ∼185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii, superposed the data on a detailed systems biology model of metabolism and iii, introduced a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigated the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy and gene dispensability. Last, we show the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments.
尽管已经有实验和理论研究致力于对遗传相互作用进行全球映射,但我们仍不了解基因-基因相互作用如何从生物分子网络的运作中产生。为了弥合经验研究和计算研究之间的差距,我们 i,定量测量了酿酒酵母中约 185000 对代谢基因对之间的遗传相互作用,ii,将数据叠加在代谢的详细系统生物学模型上,iii,引入机器学习方法将经验相互作用数据与模型预测相协调。我们系统地研究了功能模块化和代谢通量耦合对负遗传相互作用和正遗传相互作用分布的相对影响。我们还为遗传相互作用程度、多效性和基因可 dispensability 之间的联系提供了一种机制解释。最后,我们通过纠正 NAD 生物合成中的错误注释并通过体内实验对其进行确认,展示了自动代谢模型细化的可行性。