Suppr超能文献

机器学习在深部脑刺激手术中辅助丘脑底核定位的系统评价和 Meta 分析。

Machine learning for the localization of Subthalamic Nucleus during deep brain stimulation surgery: a systematic review and Meta-analysis.

机构信息

Department of Neurosurgery, Universitas Pelita Harapan, Tangerang, Banten, Indonesia.

Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia.

出版信息

Neurosurg Rev. 2024 Oct 10;47(1):774. doi: 10.1007/s10143-024-03010-x.

Abstract

INTRODUCTION

Delineating subthalamic nucleus (STN) boundaries using microelectrode recordings (MER) and trajectory history is a valuable resource for neurosurgeons, aiding in the accurate and efficient positioning of deep brain stimulation (DBS) electrodes within the STN. Here, we aimed to assess the application of artificial intelligence, specifically Hidden Markov Models (HMM), in the context of STN localization.

METHODS

A comprehensive search strategy was employed, encompassing electronic databases, including PubMed, EuroPMC, and MEDLINE. This search strategy entailed a combination of controlled vocabulary (e.g., MeSH terms) and free-text keywords pertaining to "artificial intelligence," "machine learning," "deep learning," and "deep brain stimulation." Inclusion criteria were applied to studies reporting the utilization of HMM for predicting outcomes in DBS, based on structured patient-level health data, and published in the English language.

RESULTS

This systematic review incorporated a total of 14 studies. Various machine learning compared wavelet feature to proposed features in diagnosing the STN, with the HMM yielding a diagnostic odds ratio (DOR) of 838.677 (95% CI: 203.309-3459.645). Similarly, the K-Nearest Neighbors (KNN) model produced parameter estimates, including a diagnostic odds ratio of 25.151 (95% CI: 12.270-51.555). Meanwhile, the support vector machine (SVM) model exhibited parameter estimates, with a DOR of 13.959 (95% CI: 10.436-18.671).

CONCLUSIONS

MER data demonstrates significant variability in neural activity, with studies employing a wide range of methodologies. Machine learning plays a crucial role in aiding STN diagnosis, though its accuracy varies across different approaches.

摘要

简介

使用微电极记录 (MER) 和轨迹历史来描绘丘脑底核 (STN) 的边界,对于神经外科医生来说是一种宝贵的资源,有助于在 STN 内准确有效地定位深部脑刺激 (DBS) 电极。在这里,我们旨在评估人工智能,特别是隐马尔可夫模型 (HMM),在 STN 定位中的应用。

方法

采用全面的搜索策略,包括电子数据库,包括 PubMed、EuroPMC 和 MEDLINE。该搜索策略涉及使用受控词汇(例如 MeSH 术语)和与“人工智能”、“机器学习”、“深度学习”和“深部脑刺激”相关的自由文本关键字的组合。纳入标准是基于结构化患者水平健康数据并以英文发表的报告 HMM 用于预测 DBS 结果的研究。

结果

这项系统评价共纳入了 14 项研究。各种机器学习方法比较了小波特征与提出的 STN 诊断特征,HMM 产生的诊断优势比 (DOR) 为 838.677(95%CI:203.309-3459.645)。同样,K-最近邻 (KNN) 模型产生了参数估计值,包括诊断优势比为 25.151(95%CI:12.270-51.555)。而支持向量机 (SVM) 模型则表现出参数估计值,诊断优势比为 13.959(95%CI:10.436-18.671)。

结论

MER 数据显示神经活动存在显著差异,研究采用了广泛的方法。机器学习在辅助 STN 诊断方面发挥着重要作用,尽管其准确性因不同方法而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验