Suppr超能文献

利用重复出现的多肽序列预测蛋白质-蛋白质相互作用的结合位点和新的基序发现。

Binding site prediction for protein-protein interactions and novel motif discovery using re-occurring polypeptide sequences.

机构信息

School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada.

出版信息

BMC Bioinformatics. 2011 Jun 2;12:225. doi: 10.1186/1471-2105-12-225.

Abstract

BACKGROUND

While there are many methods for predicting protein-protein interaction, very few can determine the specific site of interaction on each protein. Characterization of the specific sequence regions mediating interaction (binding sites) is crucial for an understanding of cellular pathways. Experimental methods often report false binding sites due to experimental limitations, while computational methods tend to require data which is not available at the proteome-scale. Here we present PIPE-Sites, a novel method of protein specific binding site prediction based on pairs of re-occurring polypeptide sequences, which have been previously shown to accurately predict protein-protein interactions. PIPE-Sites operates at high specificity and requires only the sequences of query proteins and a database of known binary interactions with no binding site data, making it applicable to binding site prediction at the proteome-scale.

RESULTS

PIPE-Sites was evaluated using a dataset of 265 yeast and 423 human interacting proteins pairs with experimentally-determined binding sites. We found that PIPE-Sites predictions were closer to the confirmed binding site than those of two existing binding site prediction methods based on domain-domain interactions, when applied to the same dataset. Finally, we applied PIPE-Sites to two datasets of 2347 yeast and 14,438 human novel interacting protein pairs predicted to interact with high confidence. An analysis of the predicted interaction sites revealed a number of protein subsequences which are highly re-occurring in binding sites and which may represent novel binding motifs.

CONCLUSIONS

PIPE-Sites is an accurate method for predicting protein binding sites and is applicable to the proteome-scale. Thus, PIPE-Sites could be useful for exhaustive analysis of protein binding patterns in whole proteomes as well as discovery of novel binding motifs. PIPE-Sites is available online at http://pipe-sites.cgmlab.org/.

摘要

背景

虽然有许多预测蛋白质-蛋白质相互作用的方法,但很少有方法可以确定每个蛋白质相互作用的特定部位。对介导相互作用(结合部位)的特定序列区域的特征描述对于理解细胞途径至关重要。由于实验限制,实验方法通常会报告错误的结合部位,而计算方法往往需要在蛋白质组规模上不可用的数据。在这里,我们提出了 PIPE-Sites,这是一种基于反复出现的多肽序列对的新型蛋白质特定结合部位预测方法,该方法以前已被证明可以准确预测蛋白质-蛋白质相互作用。PIPE-Sites 具有高特异性,仅需要查询蛋白的序列和已知的二进制相互作用数据库,而无需结合部位数据,使其可适用于蛋白质组规模的结合部位预测。

结果

使用具有实验确定的结合部位的 265 个酵母和 423 个人类相互作用蛋白对数据集评估了 PIPE-Sites。我们发现,当应用于相同的数据集时,与基于结构域-结构域相互作用的两种现有结合部位预测方法相比,PIPE-Sites 的预测更接近确认的结合部位。最后,我们将 PIPE-Sites 应用于两个数据集,这两个数据集分别包含 2347 个酵母和 14438 个人类新型相互作用蛋白对,这些蛋白对被预测为具有高度置信度的相互作用。对预测的相互作用部位的分析揭示了一些在结合部位高度重复的蛋白质子序列,这些子序列可能代表新的结合基序。

结论

PIPE-Sites 是一种准确的预测蛋白质结合部位的方法,并且适用于蛋白质组规模。因此,PIPE-Sites 可用于对整个蛋白质组中的蛋白质结合模式进行详尽分析以及发现新的结合基序。PIPE-Sites 可在 http://pipe-sites.cgmlab.org/ 在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b80a/3120708/d38112b0500d/1471-2105-12-225-3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验