Suppr超能文献

四结构域细丝蛋白片段的组装和拼接变体 1 对结构的影响。

Assembly of a filamin four-domain fragment and the influence of splicing variant-1 on the structure.

机构信息

Department of Biological and Environmental Science and Nanoscience Center, P. O. Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland.

出版信息

J Biol Chem. 2011 Jul 29;286(30):26921-30. doi: 10.1074/jbc.M110.195958. Epub 2011 Jun 2.

Abstract

Filamins are scaffold proteins that bind to various proteins, including the actin cytoskeleton, integrin adhesion receptors, and adaptor proteins such as migfilin. Alternative splicing of filamin, largely constructed from 24 Ig-like domains, is thought to have a role in regulating its interactions with other proteins. The filamin A splice variant-1 (FLNa var-1) lacks 41 amino acids, including the last β-strand of domain 19, FLNa(19), and the first β-strand of FLNa(20) that was previously shown to mask a key binding site on FLNa(21). Here, we present a structural characterization of domains 18-21, FLNa(18-21), in the FLNa var-1 as well as its nonspliced counterpart. A model of nonspliced FLNa(18-21), obtained from small angle x-ray scattering data, shows that these four domains form an L-shaped structure, with one arm composed of a pair of domains. NMR spectroscopy reveals that in the splice variant, FLNa(19) is unstructured whereas the other domains retain the same fold as in their canonical counterparts. The maximum dimensions predicted by small angle x-ray scattering data are increased upon migfilin binding in the FLNa(18-21) but not in the splice variant, suggesting that migfilin binding is able to displace the masking β-strand and cause a rearrangement of the structure. Possible function roles for the spliced variants are discussed.

摘要

细丝蛋白是一种支架蛋白,可与多种蛋白质结合,包括肌动蛋白细胞骨架、整合素粘附受体和衔接蛋白如迁移蛋白(migfilin)。细丝蛋白的选择性剪接主要由 24 个免疫球蛋白样结构域构成,被认为在调节其与其他蛋白质的相互作用中发挥作用。细丝蛋白 A 剪接变异体-1(FLNa var-1)缺失 41 个氨基酸,包括第 19 结构域的最后一个β-链和 FLNa(20)的第一个β-链,此前研究表明,这两个结构域掩盖了 FLNa(21)上的一个关键结合位点。在这里,我们对 FLNa var-1 中的结构域 18-21(FLNa(18-21))及其非剪接对应的结构进行了结构特征描述。从小角度 X 射线散射数据获得的非剪接 FLNa(18-21)模型表明,这四个结构域形成 L 形结构,其中一个臂由一对结构域组成。NMR 光谱学表明,在剪接变体中,FLNa(19)无结构,而其他结构域保留与其典型对应物相同的折叠。小角度 X 射线散射数据预测的最大尺寸在 migfilin 结合到 FLNa(18-21)中时增加,但在剪接变体中不增加,这表明 migfilin 结合能够置换掩蔽的β-链并引起结构重排。讨论了剪接变体的可能功能作用。

相似文献

1
Assembly of a filamin four-domain fragment and the influence of splicing variant-1 on the structure.
J Biol Chem. 2011 Jul 29;286(30):26921-30. doi: 10.1074/jbc.M110.195958. Epub 2011 Jun 2.
2
Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.
J Biol Chem. 2008 Dec 12;283(50):35154-63. doi: 10.1074/jbc.M802592200. Epub 2008 Sep 30.
3
Structural basis of filamin A functions.
J Cell Biol. 2007 Dec 3;179(5):1011-25. doi: 10.1083/jcb.200707073.
4
Electron microscopy and 3D reconstruction reveals filamin Ig domain binding to F-actin.
J Mol Biol. 2012 Dec 14;424(5):248-56. doi: 10.1016/j.jmb.2012.09.025. Epub 2012 Oct 4.
5
The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended.
Biochem J. 2012 Sep 1;446(2):261-9. doi: 10.1042/BJ20120361.
6
Structure of three tandem filamin domains reveals auto-inhibition of ligand binding.
EMBO J. 2007 Sep 5;26(17):3993-4004. doi: 10.1038/sj.emboj.7601827. Epub 2007 Aug 9.
7
1H, 13C and 15N resonance assignments of the human filamin A tandem immunoglobulin-like domains 16-17 and 18-19.
Biomol NMR Assign. 2009 Jun;3(1):53-6. doi: 10.1007/s12104-008-9140-6. Epub 2009 Jan 4.
8
The molecular basis of filamin binding to integrins and competition with talin.
Mol Cell. 2006 Feb 3;21(3):337-47. doi: 10.1016/j.molcel.2006.01.011.
9
Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Aug 1;67(Pt 8):871-6. doi: 10.1107/S1744309111024249. Epub 2011 Jul 26.
10
New insights into the versatile roles of platelet FlnA.
Platelets. 2013;24(1):1-5. doi: 10.3109/09537104.2011.654004. Epub 2012 Feb 28.

引用本文的文献

1
Rational design of F NMR labelling sites to probe protein structure and interactions.
Nat Commun. 2025 May 8;16(1):4300. doi: 10.1038/s41467-025-59105-6.
2
Role of filamin A in the pathogenesis of neuroendocrine tumors and adrenal cancer.
Endocr Oncol. 2022 Oct 28;2(1):R143-R152. doi: 10.1530/EO-22-0055. eCollection 2022 Jan.
4
Drug resistance in pituitary tumours: from cell membrane to intracellular signalling.
Nat Rev Endocrinol. 2021 Sep;17(9):560-571. doi: 10.1038/s41574-021-00514-0. Epub 2021 Jun 30.
5
Dopamine and Somatostatin Analogues Resistance of Pituitary Tumors: Focus on Cytoskeleton Involvement.
Front Endocrinol (Lausanne). 2015 Dec 22;6:187. doi: 10.3389/fendo.2015.00187. eCollection 2015.
6
An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu).
Biochem Biophys Res Commun. 2016 Jan 15;469(3):659-64. doi: 10.1016/j.bbrc.2015.12.044. Epub 2015 Dec 17.
7
Flexible Structure of Peptide-Bound Filamin A Mechanosensor Domain Pair 20-21.
PLoS One. 2015 Aug 31;10(8):e0136969. doi: 10.1371/journal.pone.0136969. eCollection 2015.
8
Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function.
Eur J Hum Genet. 2016 Mar;24(3):408-14. doi: 10.1038/ejhg.2015.119. Epub 2015 Jun 10.
9
Dynamic force sensing of filamin revealed in single-molecule experiments.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19679-84. doi: 10.1073/pnas.1211274109. Epub 2012 Nov 13.
10
Binding properties and stability of the Ras-association domain of Rap1-GTP interacting adapter molecule (RIAM).
PLoS One. 2012;7(4):e31955. doi: 10.1371/journal.pone.0031955. Epub 2012 Apr 16.

本文引用的文献

1
Loss of migfilin expression has no overt consequences on murine development and homeostasis.
J Cell Sci. 2011 Feb 1;124(Pt 3):414-21. doi: 10.1242/jcs.075960. Epub 2011 Jan 11.
2
Using Situs for the integration of multi-resolution structures.
Biophys Rev. 2010 Feb;2(1):21-27. doi: 10.1007/s12551-009-0026-3. Epub 2010 Jan 8.
3
Filamins in cell signaling, transcription and organ development.
Trends Cell Biol. 2010 Feb;20(2):113-23. doi: 10.1016/j.tcb.2009.12.001. Epub 2010 Jan 12.
4
Phosphorylation facilitates the integrin binding of filamin under force.
Biophys J. 2009 Dec 16;97(12):3095-104. doi: 10.1016/j.bpj.2009.08.059.
6
The regulation mechanism for the auto-inhibition of binding of human filamin A to integrin.
J Mol Biol. 2009 Oct 30;393(3):644-57. doi: 10.1016/j.jmb.2009.08.035. Epub 2009 Aug 20.
7
Atomic structures of two novel immunoglobulin-like domain pairs in the actin cross-linking protein filamin.
J Biol Chem. 2009 Sep 11;284(37):25450-8. doi: 10.1074/jbc.M109.019661. Epub 2009 Jul 21.
8
Migfilin, a molecular switch in regulation of integrin activation.
J Biol Chem. 2009 Feb 13;284(7):4713-22. doi: 10.1074/jbc.M807719200. Epub 2008 Dec 13.
9
Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.
J Biol Chem. 2008 Dec 12;283(50):35154-63. doi: 10.1074/jbc.M802592200. Epub 2008 Sep 30.
10
Integrin binding immunoglobulin type filamin domains have variable stability.
Biochemistry. 2008 Oct 21;47(42):11055-61. doi: 10.1021/bi8011466. Epub 2008 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验