Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, New Zealand.
PLoS One. 2011;6(5):e20051. doi: 10.1371/journal.pone.0020051. Epub 2011 May 26.
The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as "cohesinopathies". However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases.
人类发育疾病 Cornelia de Lange 综合征(CdLS)和 Roberts 综合征(RBS)均由负责姐妹染色单体黏合的蛋白质突变引起。黏合由一个称为 cohesin 的多亚基复合物介导,该复合物由 NIPBL 加载到染色体上。一旦加载到染色体上,cohesin 结合在 S 期通过 ESCO2 的乙酰化而稳定。CdLS 是由 NIPBL 或 cohesin 亚基 SMC1A 和 SMC3 的杂合突变引起的,而 RBS 是由 ESCO2 的纯合突变引起的。CdLS 和 RBS 的遗传原因都位于染色体黏合装置内,因此它们统称为“黏合蛋白病”。然而,这两种综合征具有不同的表型,其差异不能用它们共同的本体论来解释。在这项研究中,我们使用斑马鱼模型来区分 cohesin 本身或其乙酰转移酶 ESCO2 下游的发育途径。Esco2 耗尽的斑马鱼胚胎表现出类似于 RBS 的特征,包括有丝分裂缺陷、颅面异常和肢体截断。Esco2 耗尽的胚胎的微阵列分析显示,与 cohesin 亚基 Rad21 相比,Esco2 下游的不同基因子集受到调节。Rad21 下游的基因显示出转录调节剂的显著富集,而 Esco2 调节的基因更可能参与细胞周期或凋亡。RNA 原位杂交显示,由 cohesin 时空调节的 runx1 在 Esco2 耗尽的胚胎中正常表达。此外,在 rad21 突变体中下调的 myca 在 Esco2 耗尽的胚胎中上调。高水平的细胞死亡导致 Esco2 耗尽的胚胎的形态,但不影响特定的发育途径。我们提出,细胞增殖缺陷和细胞凋亡可能是 RBS 特征的主要原因。我们的结果表明,黏合装置的不同元件的突变具有不同的发育结果,并为为什么 CdLS 和 RBS 是不同的疾病提供了见解。