Xiong Chi, Pernice Wolfram, Ryu Kevin K, Schuck Carsten, Fong King Y, Palacios Tomas, Tang Hong X
Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA.
Opt Express. 2011 May 23;19(11):10462-70. doi: 10.1364/OE.19.010462.
We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The χ2 nonlinear susceptibility is measured to be as high as 16 ± 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and infrared wavelengths, our platform provides a viable route for the on-chip generation of optical wavelengths in both the far infrared and near-UV through a combination of χ2 enabled sum-/difference-frequency processes.
我们通过在硅(100)衬底上异质集成单晶氮化镓(GaN),在硅基架构中展示了二阶光学非线性。通过设计GaN微环以在1560 nm和780 nm附近实现双共振,我们在780 nm处实现了高效、可调谐的二次谐波产生。测量得到的χ2非线性极化率高达16±7 pm/V。由于GaN具有覆盖紫外、可见和红外波长的宽带透明窗口,我们的平台通过χ2相关的和频/差频过程相结合,为片上产生远红外和近紫外光波长提供了一条可行的途径。