Suppr超能文献

硅基平台上的超宽带集成光子器件:从可见光到中红外

Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR.

作者信息

Guo Xuhan, Ji Xingchen, Yao Baicheng, Tan Teng, Chu Allen, Westreich Ohad, Dutt Avik, Wong Cheewei, Su Yikai

机构信息

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China.

John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Nanophotonics. 2023 Jan 18;12(2):167-196. doi: 10.1515/nanoph-2022-0575. eCollection 2023 Jan.

Abstract

Silicon photonics has gained great success mainly due to the promise of realizing compact devices in high volume through the low-cost foundry model. It is burgeoning from laboratory research into commercial production endeavors such as datacom and telecom. However, it is unsuitable for some emerging applications which require coverage across the visible or mid infrared (mid-IR) wavelength bands. It is desirable to introduce other wideband materials through heterogeneous integration, while keeping the integration compatible with wafer-scale fabrication processes on silicon substrates. We discuss the properties of silicon-family materials including silicon, silicon nitride, and silica, and other non-group IV materials such as metal oxide, tantalum pentoxide, lithium niobate, aluminum nitride, gallium nitride, barium titanate, piezoelectric lead zirconate titanate, and 2D materials. Typical examples of devices using these materials on silicon platform are provided. We then introduce a general fabrication method and low-loss process treatment for photonic devices on the silicon platform. From an applications viewpoint, we focus on three new areas requiring integration: sensing, optical comb generation, and quantum information processing. Finally, we conclude with perspectives on how new materials and integration methods can address previously unattainable wavelength bands while maintaining the advantages of silicon, thus showing great potential for future widespread applications.

摘要

硅光子学取得了巨大成功,主要得益于通过低成本代工模式大量生产紧凑型器件的前景。它正从实验室研究蓬勃发展到数据通信和电信等商业生产领域。然而,它不适用于一些需要覆盖可见光或中红外(mid-IR)波段的新兴应用。期望通过异质集成引入其他宽带材料,同时保持集成与硅基片上的晶圆级制造工艺兼容。我们讨论了硅族材料的特性,包括硅、氮化硅和二氧化硅,以及其他非IV族材料,如金属氧化物、五氧化二钽、铌酸锂、氮化铝、氮化镓、钛酸钡、压电锆钛酸铅和二维材料。提供了在硅平台上使用这些材料的典型器件示例。然后,我们介绍了一种用于硅平台上光子器件的通用制造方法和低损耗工艺处理。从应用角度来看,我们专注于需要集成的三个新领域:传感、光学频率梳产生和量子信息处理。最后,我们展望了新材料和集成方法如何在保持硅的优势的同时,解决以前无法实现的波段问题,从而显示出未来广泛应用的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3f/11501867/239be61aec23/j_nanoph-2022-0575_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验