Suppr超能文献

实现用于能源应用的高温纳米光子学。

Enabling high-temperature nanophotonics for energy applications.

机构信息

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2280-5. doi: 10.1073/pnas.1120149109. Epub 2012 Jan 23.

Abstract

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective emission of light. However, special challenges arise when trying to design nanophotonic materials with precisely tailored optical properties that can operate at high-temperatures (> 1,100 K). These include proper material selection and purity to prevent melting, evaporation, or chemical reactions; severe minimization of any material interfaces to prevent thermomechanical problems such as delamination; robust performance in the presence of surface diffusion; and long-range geometric precision over large areas with severe minimization of very small feature sizes to maintain structural stability. Here we report an approach for high-temperature nanophotonics that surmounts all of these difficulties. It consists of an analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry (specifically chosen to eliminate interfaces arising from layer-by-layer fabrication) optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion. It offers near-ultimate short-wavelength emittance and low, ultra-broadband long-wavelength emittance, along with a sharp cutoff offering 41 emittance contrast over 10% wavelength separation. This is achieved via Q-matching, whereby the absorptive and radiative rates of the photonic crystal's cavity resonances are matched. Strong angular emission selectivity is also observed, with short-wavelength emission suppressed by 50% at 75° compared to normal incidence. Finally, a precise high-temperature measurement technique is developed to confirm that emission at 1,225 K can be primarily confined to wavelengths shorter than the cutoff wavelength.

摘要

高温纳米光子学领域有潜力实现许多重要的固态能量转换应用,例如热光伏能量产生、选择性太阳能吸收和光的选择性发射。然而,当试图设计具有精确可调光学特性的纳米光子材料以在高温(>1100 K)下工作时,会出现特殊的挑战。这些挑战包括适当的材料选择和纯度以防止熔化、蒸发或化学反应;最大限度地减少任何材料界面以防止分层等热机械问题;在表面扩散存在的情况下具有稳健的性能;以及在大面积上具有长程几何精度,同时最小化非常小的特征尺寸以保持结构稳定性。在这里,我们报告了一种克服所有这些困难的高温纳米光子学方法。它包括涉及高纯钨的分析和计算指导设计,采用精确制造的光子晶体平板几何形状(专门选择以消除由逐层制造引起的界面),针对粗糙度、制造误差和表面扩散存在时的高性能和稳健性进行了优化。它提供了近极限的短波发射率和低的、超宽带的长波发射率,以及具有 41%发射对比度的尖锐截止,在 10%波长分离下。这是通过 Q 匹配实现的,其中光子晶体腔共振的吸收和辐射率相匹配。还观察到强烈的角发射选择性,与正常入射相比,在 75°时短波长发射抑制了 50%。最后,开发了一种精确的高温测量技术来确认在 1225 K 时的发射可以主要限制在截止波长以下的波长范围内。

相似文献

1
Enabling high-temperature nanophotonics for energy applications.实现用于能源应用的高温纳米光子学。
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2280-5. doi: 10.1073/pnas.1120149109. Epub 2012 Jan 23.

引用本文的文献

1
Lithography-free directional control of thermal emission.无光刻热发射方向控制
Nanophotonics. 2024 Jan 10;13(5):763-771. doi: 10.1515/nanoph-2023-0595. eCollection 2024 Mar.
2
Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering.热发射工程中的科技突破综述
ACS Appl Opt Mater. 2024 Apr 9;2(6):898-927. doi: 10.1021/acsaom.4c00030. eCollection 2024 Jun 28.
8
Photonic thermal management of coloured objects.彩色物体的光子热管理。
Nat Commun. 2018 Oct 12;9(1):4240. doi: 10.1038/s41467-018-06535-0.

本文引用的文献

10
Coherent emission of light by thermal sources.热光源的相干光发射。
Nature. 2002 Mar 7;416(6876):61-4. doi: 10.1038/416061a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验