Suppr超能文献

影响拟南芥端粒介导的染色体截断的参数。

Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.

出版信息

Plant Cell. 2011 Jun;23(6):2263-72. doi: 10.1105/tpc.111.086017. Epub 2011 Jun 7.

Abstract

Conversion of a double-strand break into a telomere is a dangerous, potentially lethal event. However, little is known about the mechanism and control of de novo telomere formation (DNTF). DNTF can be instigated by the insertion of a telomere repeat array (TRA) into the host genome, which seeds the formation of a new telomere, resulting in chromosome truncation. Such events are rare and concentrated at chromosome ends. Here, we introduce tetraploid Arabidopsis thaliana as a robust genetic model for DNTF. Transformation of a 2.6-kb TRA into tetraploid plants resulted in a DNTF efficiency of 56%, fivefold higher than in diploid plants and 50-fold higher than in human cells. DNTF events were recovered across the entire genome, indicating that genetic redundancy facilitates recovery of DNTF events. Although TRAs as short as 100 bp seeded new telomeres, these tracts were unstable unless they were extended above a 1-kb size threshold. Unexpectedly, DNTF efficiency increased in plants lacking telomerase, and DNTF rates were lower in plants null for Ku70 or Lig4, components of the nonhomologous end-joining repair pathway. We conclude that multiple competing pathways modulate DNTF, and that tetraploid Arabidopsis will be a powerful model for elucidating the molecular details of these processes.

摘要

双链断裂转化为端粒是一种危险的、潜在致命的事件。然而,人们对端粒从头形成(DNTF)的机制和控制知之甚少。DNTF 可以通过将端粒重复序列(TRA)插入宿主基因组来引发,这会引发新端粒的形成,导致染色体截断。这种事件很少见,而且集中在染色体末端。在这里,我们引入四倍体拟南芥作为 DNTF 的强大遗传模型。将 2.6kb TRA 转化为四倍体植物,导致 DNTF 效率为 56%,是二倍体植物的五倍,是人类细胞的 50 倍。DNTF 事件在整个基因组中得到恢复,表明遗传冗余有助于 DNTF 事件的恢复。尽管短至 100bp 的 TRA 可以引发新的端粒,但这些片段不稳定,除非它们扩展到 1kb 以上的大小阈值。出乎意料的是,缺乏端粒酶的植物中 DNTF 效率增加,而 Ku70 或 Lig4 缺失的植物(非同源末端连接修复途径的组成部分)中的 DNTF 率较低。我们得出结论,多种竞争途径调节 DNTF,四倍体拟南芥将成为阐明这些过程分子细节的强大模型。

相似文献

8
STN1 protects chromosome ends in Arabidopsis thaliana.STN1保护拟南芥中的染色体末端。
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19815-20. doi: 10.1073/pnas.0807867105. Epub 2008 Dec 8.

引用本文的文献

1
2
Biocircuits in plants and eukaryotic algae.植物和真核藻类中的生物电路。
Front Plant Sci. 2022 Sep 23;13:982959. doi: 10.3389/fpls.2022.982959. eCollection 2022.
3
Artificial chromosome technology and its potential application in plants.人工染色体技术及其在植物中的潜在应用。
Front Plant Sci. 2022 Sep 15;13:970943. doi: 10.3389/fpls.2022.970943. eCollection 2022.
6
Genetic and epigenetic effects on centromere establishment.遗传和表观遗传对着丝粒建立的影响。
Chromosoma. 2020 Mar;129(1):1-24. doi: 10.1007/s00412-019-00727-3. Epub 2019 Nov 28.
7
Atypical centromeres in plants-what they can tell us.植物中的非典型着丝粒——它们能告诉我们什么。
Front Plant Sci. 2015 Oct 26;6:913. doi: 10.3389/fpls.2015.00913. eCollection 2015.
9
Engineered minichromosomes in plants.植物中的工程化微型染色体
Chromosome Res. 2015 Feb;23(1):77-85. doi: 10.1007/s10577-014-9454-4.
10
Engineering of plant chromosomes.植物染色体工程
Chromosome Res. 2015 Feb;23(1):69-76. doi: 10.1007/s10577-014-9449-1.

本文引用的文献

1
Two RNA subunits and POT1a are components of Arabidopsis telomerase.两个 RNA 亚基和 POT1a 是拟南芥端粒酶的组成部分。
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):73-78. doi: 10.1073/pnas.1013021107. Epub 2010 Dec 16.
2
Comparative biology of telomeres: where plants stand.端粒的比较生物学:植物在何处。
FEBS Lett. 2010 Sep 10;584(17):3752-9. doi: 10.1016/j.febslet.2010.06.017. Epub 2010 Jun 19.
4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验