Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Rome, Italy.
J Biol Chem. 2011 Aug 5;286(31):27167-75. doi: 10.1074/jbc.M111.239541. Epub 2011 Jun 8.
Protein-protein interactions mediated by modular protein domains are critical for cell scaffolding, differentiation, signaling, and ultimately, evolution. Given the vast number of ligands competing for binding to a limited number of domain families, it is often puzzling how specificity can be achieved. Selectivity may be modulated by intradomain allostery, whereby a remote residue is energetically connected to the functional binding site via side chain or backbone interactions. Whereas several energetic pathways, which could mediate intradomain allostery, have been predicted in modular protein domains, there is a paucity of experimental data to validate their existence and roles. Here, we have identified such functional energetic networks in one of the most common protein-protein interaction modules, the PDZ domain. We used double mutant cycles involving site-directed mutagenesis of both the PDZ domain and the peptide ligand, in conjunction with kinetics to capture the fine energetic details of the networks involved in peptide recognition. We performed the analysis on two homologous PDZ-ligand complexes and found that the energetically coupled residues differ for these two complexes. This result demonstrates that amino acid sequence rather than topology dictates the allosteric pathways. Furthermore, our data support a mechanism whereby the whole domain and not only the binding pocket is optimized for a specific ligand. Such cross-talk between binding sites and remote residues may be used to fine tune target selectivity.
蛋白质与蛋白质之间的相互作用是由模块蛋白结构域介导的,这些相互作用对于细胞支架、分化、信号传递以及最终的进化都至关重要。鉴于有大量的配体竞争与有限数量的结构域家族结合,实现特异性的机制常常令人费解。结构域内变构作用可能调节选择性,在此过程中,远程残基通过侧链或骨架相互作用在能量上与功能结合位点连接。尽管已经预测了几个可能介导结构域内变构作用的能量途径,但缺乏实验数据来验证它们的存在和作用。在这里,我们在最常见的蛋白-蛋白相互作用模块之一 PDZ 结构域中鉴定了这样的功能性能量网络。我们使用了双突变循环,涉及 PDZ 结构域和肽配体的定点突变,并结合动力学来捕获肽识别中涉及的网络的精细能量细节。我们对两个同源 PDZ-配体复合物进行了分析,发现这两个复合物中能量耦联残基不同。这一结果表明,是氨基酸序列而不是拓扑结构决定了变构途径。此外,我们的数据支持这样一种机制,即整个结构域而不仅仅是结合口袋被优化用于特定的配体。这种结合位点与远程残基之间的交叉对话可能被用来微调靶标选择性。