Vascular Biology Center, Georgia Health Sciences University, Augusta, 30912, USA.
Am J Respir Cell Mol Biol. 2011 Dec;45(6):1185-94. doi: 10.1165/rcmb.2011-0092OC. Epub 2011 Jun 9.
We showed previously that microtubule disruptor 2-methoxyestradiol (2ME) induces hyperpermeability of the endothelial monolayer via mechanisms that include the activation of p38 and Rho kinase (ROCK) and rearrangement of the actin cytoskeleton. Using the protein kinase C (PKC) inhibitors Ro-31-7549 and Ro-32-0432, we show in vitro and in vivo that 2ME-induced barrier dysfunction is also PKC-dependent. The known PKC substrates ezrin, radixin, and moesin (ERM) were recently implicated in the regulation of endothelial permeability. This study tested the hypotheses that ERM proteins are phosphorylated in response to 2ME, and that this phosphorylation is involved in 2ME-induced barrier dysfunction. We show that the application of 2ME leads to a dramatic increase in the level of ERM phosphorylation. This increase is attenuated in cells pretreated with the microtubule stabilizer taxol. In human pulmonary artery endothelial cells (HPAECs), the phosphorylation of ERM occurs in a p38-dependent and PKC-dependent manner. The activation of p38 appears to occur upstream from the activation of PKC, in response to 2ME. Phosphorylated ERM are localized at the cell periphery during the early phase of response to 2ME (15 minutes), and colocalize with F-actin branching points during the later phase of response (60 minutes). Using the short interfering RNA approach, we also showed that individual ERM depletion significantly attenuates 2ME-induced hyperpermeability. HPAEC monolayers, depleted of ERM proteins and monolayers, overexpressing phosphorylation-deficient ERM mutants, exhibit less attenuation of 2ME-induced barrier disruption in response to the PKC inhibitor Ro-31-7549. These results suggest a critical role of PKC activation in response to microtubule-disrupting agents, and implicate the phosphorylation of ERM in the barrier dysfunction induced by 2ME.
我们之前已经证明,微管破坏剂 2-甲氧基雌二醇(2ME)通过包括激活 p38 和 Rho 激酶(ROCK)以及肌动蛋白细胞骨架重排在内的机制诱导内皮单层的高通透性。使用蛋白激酶 C(PKC)抑制剂 Ro-31-7549 和 Ro-32-0432,我们在体外和体内证明,2ME 诱导的屏障功能障碍也依赖于 PKC。已知的 PKC 底物 ezrin、radixin 和 moesin(ERM)最近被牵涉到内皮通透性的调节中。本研究检验了以下假设:ERM 蛋白在响应 2ME 时被磷酸化,并且这种磷酸化参与 2ME 诱导的屏障功能障碍。我们发现,2ME 的应用导致 ERM 磷酸化水平的急剧增加。在用微管稳定剂紫杉醇预处理的细胞中,这种增加被减弱。在人肺动脉内皮细胞(HPAEC)中,ERM 的磷酸化以 p38 依赖性和 PKC 依赖性的方式发生。p38 的激活似乎发生在 PKC 激活的上游,响应于 2ME。磷酸化的 ERM 在响应 2ME 的早期阶段(15 分钟)位于细胞边缘,并且在响应的后期阶段(60 分钟)与 F-肌动蛋白分支点共定位。使用短干扰 RNA 方法,我们还表明,单个 ERM 耗竭显著减弱 2ME 诱导的高通透性。ERM 蛋白耗竭的 HPAEC 单层和过表达磷酸化缺陷型 ERM 突变体的单层,在用 PKC 抑制剂 Ro-31-7549 处理时,对 2ME 诱导的屏障破坏的减弱作用较小。这些结果表明 PKC 激活在响应微管破坏剂中的关键作用,并暗示 ERM 的磷酸化在 2ME 诱导的屏障功能障碍中起作用。