Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, COMRB 3154, MC 719, 909 S. Wolcott Ave., Chicago, IL 60612, USA.
Am J Physiol Lung Cell Mol Physiol. 2013 Aug 1;305(3):L240-55. doi: 10.1152/ajplung.00355.2012. Epub 2013 May 31.
Endothelial cell (EC) barrier disruption induced by inflammatory agonists such as thrombin leads to potentially lethal physiological dysfunction such as alveolar flooding, hypoxemia, and pulmonary edema. Thrombin stimulates paracellular gap and F-actin stress fiber formation, triggers actomyosin contraction, and alters EC permeability through multiple mechanisms that include protein kinase C (PKC) activation. We previously have shown that the ezrin, radixin, and moesin (ERM) actin-binding proteins differentially participate in sphingosine-1 phosphate-induced EC barrier enhancement. Phosphorylation of a conserved threonine residue in the COOH-terminus of ERM proteins causes conformational changes in ERM to unmask binding sites and is considered a hallmark of ERM activation. In the present study we test the hypothesis that ERM proteins are phosphorylated on this critical threonine residue by thrombin-induced signaling events and explore the role of the ERM family in modulating thrombin-induced cytoskeletal rearrangement and EC barrier function. Thrombin promotes ERM phosphorylation at this threonine residue (ezrin Thr567, radixin Thr564, moesin Thr558) in a PKC-dependent fashion and induces translocation of phosphorylated ERM to the EC periphery. Thrombin-induced ERM threonine phosphorylation is likely synergistically mediated by protease-activated receptors PAR1 and PAR2. Using the siRNA approach, depletion of either moesin alone or of all three ERM proteins significantly attenuates thrombin-induced increase in EC barrier permeability (transendothelial electrical resistance), cytoskeletal rearrangements, paracellular gap formation, and accumulation of phospho-myosin light chain. In contrast, radixin depletion exerts opposing effects on these indexes. These data suggest that ERM proteins play important differential roles in the thrombin-induced modulation of EC permeability, with moesin promoting barrier dysfunction and radixin opposing it.
内皮细胞 (EC) 屏障的破坏是由炎症激动剂如凝血酶引起的,可能导致潜在的致命生理功能障碍,如肺泡积水、低氧血症和肺水肿。凝血酶刺激细胞旁间隙和 F-肌动蛋白应力纤维形成,触发肌球蛋白收缩,并通过包括蛋白激酶 C (PKC) 激活在内的多种机制改变 EC 通透性。我们之前已经表明,埃兹蛋白、根蛋白和膜突蛋白 (ERM) 肌动蛋白结合蛋白通过不同的机制参与了 1-磷酸鞘氨醇诱导的 EC 屏障增强。ERM 蛋白羧基末端保守苏氨酸残基的磷酸化导致 ERM 的构象变化,暴露出结合位点,被认为是 ERM 激活的标志。在本研究中,我们假设 ERM 蛋白通过凝血酶诱导的信号事件在这个关键的苏氨酸残基上磷酸化,并探讨 ERM 家族在调节凝血酶诱导的细胞骨架重排和 EC 屏障功能中的作用。凝血酶以 PKC 依赖的方式促进 ERM 在此苏氨酸残基上的磷酸化(埃兹蛋白 Thr567、根蛋白 Thr564、膜突蛋白 Thr558),并诱导磷酸化 ERM 向 EC 外周易位。凝血酶诱导的 ERM 苏氨酸磷酸化可能是由蛋白酶激活受体 PAR1 和 PAR2 协同介导的。通过 siRNA 方法,单独耗尽膜突蛋白或所有三种 ERM 蛋白都会显著减弱凝血酶诱导的 EC 屏障通透性(跨内皮电阻)、细胞骨架重排、细胞旁间隙形成和磷酸化肌球蛋白轻链的积累增加。相比之下,根蛋白的耗竭对这些指标产生相反的影响。这些数据表明,ERM 蛋白在凝血酶诱导的 EC 通透性调节中发挥重要的差异作用,膜突蛋白促进屏障功能障碍,而根蛋白则相反。