Suppr超能文献

HyperPCM:稳健的任务条件化药物-靶标相互作用建模。

HyperPCM: Robust Task-Conditioned Modeling of Drug-Target Interactions.

机构信息

ELLIS Unit Linz & Institute for Machine Learning, Johannes Kepler University, Linz 4040, Austria.

Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, 431 83, Sweden.

出版信息

J Chem Inf Model. 2024 Apr 8;64(7):2539-2553. doi: 10.1021/acs.jcim.3c01417. Epub 2024 Jan 7.

Abstract

A central problem in drug discovery is to identify the interactions between drug-like compounds and protein targets. Over the past few decades, various quantitative structure-activity relationship (QSAR) and proteo-chemometric (PCM) approaches have been developed to model and predict these interactions. While QSAR approaches solely utilize representations of the drug compound, PCM methods incorporate both representations of the protein target and the drug compound, enabling them to achieve above-chance predictive accuracy on previously unseen protein targets. Both QSAR and PCM approaches have recently been improved by machine learning and deep neural networks, that allow the development of drug-target interaction prediction models from measurement data. However, deep neural networks typically require large amounts of training data and cannot robustly adapt to new tasks, such as predicting interaction for unseen protein targets at inference time. In this work, we propose to use HyperNetworks to efficiently transfer information between tasks during inference and thus to accurately predict drug-target interactions on unseen protein targets. Our HyperPCM method reaches state-of-the-art performance compared to previous methods on multiple well-known benchmarks, including Davis, DUD-E, and a ChEMBL derived data set, and particularly excels at zero-shot inference involving unseen protein targets. Our method, as well as reproducible data preparation, is available at https://github.com/ml-jku/hyper-dti.

摘要

药物发现中的一个核心问题是确定类药性化合物与蛋白质靶标之间的相互作用。在过去的几十年中,已经开发出了各种定量构效关系(QSAR)和蛋白质化学计量学(PCM)方法来对这些相互作用进行建模和预测。虽然 QSAR 方法仅利用药物化合物的表示形式,但 PCM 方法同时利用蛋白质靶标和药物化合物的表示形式,从而能够在以前看不见的蛋白质靶标上实现高于机会的预测准确性。最近,QSAR 和 PCM 方法都通过机器学习和深度神经网络得到了改进,这些方法允许从测量数据中开发药物-靶标相互作用预测模型。然而,深度神经网络通常需要大量的训练数据,并且不能稳健地适应新任务,例如在推断时预测看不见的蛋白质靶标上的相互作用。在这项工作中,我们提出使用超网络在推断过程中在任务之间高效地传递信息,从而在看不见的蛋白质靶标上准确地预测药物-靶标相互作用。与之前的方法相比,我们的 HyperPCM 方法在多个著名基准上的性能达到了最新水平,包括 Davis、DUD-E 和一个源自 ChEMBL 的数据集,并且在涉及看不见的蛋白质靶标的零样本推断方面表现尤为出色。我们的方法以及可重现的数据准备可在 https://github.com/ml-jku/hyper-dti 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6a8/11005051/fe462af520ec/ci3c01417_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验