Suppr超能文献

计算机化监测与人工病历审查不良事件的比较。

Comparison of computerized surveillance and manual chart review for adverse events.

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

J Am Med Inform Assoc. 2011 Jul-Aug;18(4):491-7. doi: 10.1136/amiajnl-2011-000187.

Abstract

OBJECTIVE

To understand how the source of information affects different adverse event (AE) surveillance methods.

DESIGN

Retrospective analysis of inpatient adverse drug events (ADEs) and hospital-associated infections (HAIs) detected by either a computerized surveillance system (CSS) or manual chart review (MCR).

MEASUREMENT

Descriptive analysis of events detected using the two methods by type of AE, type of information about the AE, and sources of the information.

RESULTS

CSS detected more HAIs than MCR (92% vs 34%); however, a similar number of ADEs was detected by both systems (52% vs 51%). The agreement between systems was greater for HAIs than ADEs (26% vs 3%). The CSS missed events that did not have information in coded format or that were described only in physician narratives. The MCR detected events missed by CSS using information in physician narratives. Discharge summaries were more likely to contain information about AEs than any other type of physician narrative, followed by emergency department reports for HAIs and general consult notes for ADEs. Some ADEs found by MCR were detected by CSS but not verified by a clinician.

LIMITATIONS

Inability to distinguish between CSS false positives and suspected AEs for cases in which the clinician did not document their assessment in the CSS.

CONCLUSION

The effect that information source has on different surveillance methods depends on the type of AE. Integrating information from physician narratives with CSS using natural language processing would improve the detection of ADEs more than HAIs.

摘要

目的

了解信息来源如何影响不同的不良事件(AE)监测方法。

设计

通过计算机化监测系统(CSS)或手动病历审查(MCR)检测到的住院不良药物事件(ADE)和医院相关感染(HAI)的回顾性分析。

测量

通过两种方法检测到的事件的描述性分析,按 AE 类型、AE 信息类型和信息来源进行分类。

结果

CSS 比 MCR 检测到更多的 HAI(92% vs 34%);然而,两个系统检测到的 ADE 数量相似(52% vs 51%)。两个系统之间的一致性对于 HAI 来说大于 ADE(26% vs 3%)。CSS 遗漏了没有编码格式信息或仅在医生叙述中描述的事件。MCR 使用医生叙述中的信息检测到 CSS 遗漏的事件。出院小结比任何其他类型的医生叙述更有可能包含 AE 信息,其次是 HAI 的急诊报告和 ADE 的一般咨询记录。一些通过 MCR 发现的 ADE 通过 CSS 检测到,但未经临床医生验证。

局限性

无法区分 CSS 假阳性和怀疑的 AE,因为在这种情况下,临床医生没有在 CSS 中记录他们的评估。

结论

信息来源对不同监测方法的影响取决于 AE 的类型。使用自然语言处理将医生叙述中的信息与 CSS 集成,可以提高 ADE 的检测率,而不是 HAI。

相似文献

1
Comparison of computerized surveillance and manual chart review for adverse events.
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):491-7. doi: 10.1136/amiajnl-2011-000187.
4
Automated surveillance for adverse drug events at a community hospital and an academic medical center.
J Am Med Inform Assoc. 2006 Jul-Aug;13(4):372-7. doi: 10.1197/jamia.M2069. Epub 2006 Apr 18.
5
Automated detection of adverse events using natural language processing of discharge summaries.
J Am Med Inform Assoc. 2005 Jul-Aug;12(4):448-57. doi: 10.1197/jamia.M1794. Epub 2005 Mar 31.
7
Can surveillance systems identify and avert adverse drug events? A prospective evaluation of a commercial application.
J Am Med Inform Assoc. 2008 Sep-Oct;15(5):647-53. doi: 10.1197/jamia.M2634. Epub 2008 Jun 25.
8
Identifying drug safety issues: from research to practice.
Int J Qual Health Care. 2000 Feb;12(1):69-76. doi: 10.1093/intqhc/12.1.69.
9
Impact of vendor computerized physician order entry in community hospitals.
J Gen Intern Med. 2012 Jul;27(7):801-7. doi: 10.1007/s11606-012-1987-7. Epub 2012 Jan 21.

引用本文的文献

1
Comparing automated surveillance systems for detection of pathogen-related clusters in healthcare settings.
Antimicrob Resist Infect Control. 2024 Jun 26;13(1):69. doi: 10.1186/s13756-024-01413-5.
5
Systematic review and narrative synthesis of computerized audit and feedback systems in healthcare.
J Am Med Inform Assoc. 2022 May 11;29(6):1106-1119. doi: 10.1093/jamia/ocac031.
6
Comparing automated vs. manual data collection for COVID-specific medications from electronic health records.
Int J Med Inform. 2022 Jan;157:104622. doi: 10.1016/j.ijmedinf.2021.104622. Epub 2021 Oct 21.
8
Applying Machine Learning Across Sites: External Validation of a Surgical Site Infection Detection Algorithm.
J Am Coll Surg. 2021 Jun;232(6):963-971.e1. doi: 10.1016/j.jamcollsurg.2021.03.026. Epub 2021 Apr 5.
9
Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review.
JMIR Med Inform. 2020 Jul 24;8(7):e18599. doi: 10.2196/18599.
10
Characterizing non-heroin opioid overdoses using electronic health records.
JAMIA Open. 2019 Nov 26;3(1):77-86. doi: 10.1093/jamiaopen/ooz063. eCollection 2020 Apr.

本文引用的文献

1
Putting the public back in public reporting of health care quality.
JAMA. 2010 Oct 20;304(15):1711-2. doi: 10.1001/jama.2010.1499.
2
Bridging the gap: leveraging business intelligence tools in support of patient safety and financial effectiveness.
J Am Med Inform Assoc. 2010 Mar-Apr;17(2):136-43. doi: 10.1136/jamia.2009.002220.
3
Understanding pharmacist decision making for adverse drug event (ADE) detection.
J Eval Clin Pract. 2009 Apr;15(2):266-75. doi: 10.1111/j.1365-2753.2008.00992.x.
4
Automated surveillance of health care-associated infections.
Clin Infect Dis. 2009 May 1;48(9):1268-75. doi: 10.1086/597591.
5
Hospital admissions associated with adverse drug reactions: a systematic review of prospective observational studies.
Ann Pharmacother. 2008 Jul;42(7):1017-25. doi: 10.1345/aph.1L037. Epub 2008 Jul 1.
6
Systematic review: the evidence that publishing patient care performance data improves quality of care.
Ann Intern Med. 2008 Jan 15;148(2):111-23. doi: 10.7326/0003-4819-148-2-200801150-00006.
7
Hospital workload and adverse events.
Med Care. 2007 May;45(5):448-55. doi: 10.1097/01.mlr.0000257231.86368.09.
8
Public reporting and pay for performance in hospital quality improvement.
N Engl J Med. 2007 Feb 1;356(5):486-96. doi: 10.1056/NEJMsa064964. Epub 2007 Jan 26.
10
Automated surveillance for adverse drug events at a community hospital and an academic medical center.
J Am Med Inform Assoc. 2006 Jul-Aug;13(4):372-7. doi: 10.1197/jamia.M2069. Epub 2006 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验