Institute for Health Informatics, University of Minnesota, Twin Cities, Minneapolis, MN.
Institute for Health Informatics, University of Minnesota, Twin Cities, Minneapolis, MN; Departments of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN.
J Am Coll Surg. 2021 Jun;232(6):963-971.e1. doi: 10.1016/j.jamcollsurg.2021.03.026. Epub 2021 Apr 5.
Surgical complications have tremendous consequences and costs. Complication detection is important for quality improvement, but traditional manual chart review is burdensome. Automated mechanisms are needed to make this more efficient. To understand the generalizability of a machine learning algorithm between sites, automated surgical site infection (SSI) detection algorithms developed at one center were tested at another distinct center.
NSQIP patients had electronic health record (EHR) data extracted at one center (University of Minnesota Medical Center, Site A) over a 4-year period for model development and internal validation, and at a second center (University of California San Francisco, Site B) over a subsequent 2-year period for external validation. Models for automated NSQIP SSI detection of superficial, organ space, and total SSI within 30 days postoperatively were validated using area under the curve (AUC) scores and corresponding 95% confidence intervals.
For the 8,883 patients (Site A) and 1,473 patients (Site B), AUC scores were not statistically different for any outcome including superficial (external 0.804, internal [0.784, 0.874] AUC); organ/space (external 0.905, internal [0.867, 0.941] AUC); and total (external 0.855, internal [0.854, 0.908] AUC) SSI. False negative rates decreased with increasing case review volume and would be amenable to a strategy in which cases with low predicted probabilities of SSI could be excluded from chart review.
Our findings demonstrated that SSI detection machine learning algorithms developed at 1 site were generalizable to another institution. SSI detection models are practically applicable to accelerate and focus chart review.
手术并发症后果严重,耗费巨大。并发症检测对于质量改进很重要,但传统的手动图表审查过于繁琐。因此,需要自动化机制来提高效率。为了了解机器学习算法在不同站点之间的通用性,我们在另一个不同的中心测试了在一个中心开发的自动化手术部位感染(SSI)检测算法。
在 4 年的时间里,NSQIP 患者的电子健康记录(EHR)数据在一个中心(明尼苏达大学医学中心,站点 A)提取,用于模型开发和内部验证,在随后的 2 年时间里,在另一个中心(加州大学旧金山分校,站点 B)提取,用于外部验证。使用曲线下面积(AUC)评分和相应的 95%置信区间,对术后 30 天内自动检测 NSQIP SSI 的浅层、器官空间和总 SSI 的模型进行验证。
对于 8883 名患者(站点 A)和 1473 名患者(站点 B),任何结果的 AUC 评分均无统计学差异,包括浅层(外部 0.804,内部 [0.784,0.874] AUC);器官/空间(外部 0.905,内部 [0.867,0.941] AUC);以及总(外部 0.855,内部 [0.854,0.908] AUC)SSI。假阴性率随着病例审查量的增加而降低,因此可以采用一种策略,即对 SSI 预测概率低的病例,可以不进行图表审查。
我们的研究结果表明,在一个站点开发的 SSI 检测机器学习算法可以推广到另一个机构。SSI 检测模型在实践中可用于加速和重点审查图表。