Suppr超能文献

跨站点应用机器学习:手术部位感染检测算法的外部验证。

Applying Machine Learning Across Sites: External Validation of a Surgical Site Infection Detection Algorithm.

机构信息

Institute for Health Informatics, University of Minnesota, Twin Cities, Minneapolis, MN.

Institute for Health Informatics, University of Minnesota, Twin Cities, Minneapolis, MN; Departments of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN.

出版信息

J Am Coll Surg. 2021 Jun;232(6):963-971.e1. doi: 10.1016/j.jamcollsurg.2021.03.026. Epub 2021 Apr 5.

Abstract

BACKGROUND

Surgical complications have tremendous consequences and costs. Complication detection is important for quality improvement, but traditional manual chart review is burdensome. Automated mechanisms are needed to make this more efficient. To understand the generalizability of a machine learning algorithm between sites, automated surgical site infection (SSI) detection algorithms developed at one center were tested at another distinct center.

STUDY DESIGN

NSQIP patients had electronic health record (EHR) data extracted at one center (University of Minnesota Medical Center, Site A) over a 4-year period for model development and internal validation, and at a second center (University of California San Francisco, Site B) over a subsequent 2-year period for external validation. Models for automated NSQIP SSI detection of superficial, organ space, and total SSI within 30 days postoperatively were validated using area under the curve (AUC) scores and corresponding 95% confidence intervals.

RESULTS

For the 8,883 patients (Site A) and 1,473 patients (Site B), AUC scores were not statistically different for any outcome including superficial (external 0.804, internal [0.784, 0.874] AUC); organ/space (external 0.905, internal [0.867, 0.941] AUC); and total (external 0.855, internal [0.854, 0.908] AUC) SSI. False negative rates decreased with increasing case review volume and would be amenable to a strategy in which cases with low predicted probabilities of SSI could be excluded from chart review.

CONCLUSIONS

Our findings demonstrated that SSI detection machine learning algorithms developed at 1 site were generalizable to another institution. SSI detection models are practically applicable to accelerate and focus chart review.

摘要

背景

手术并发症后果严重,耗费巨大。并发症检测对于质量改进很重要,但传统的手动图表审查过于繁琐。因此,需要自动化机制来提高效率。为了了解机器学习算法在不同站点之间的通用性,我们在另一个不同的中心测试了在一个中心开发的自动化手术部位感染(SSI)检测算法。

研究设计

在 4 年的时间里,NSQIP 患者的电子健康记录(EHR)数据在一个中心(明尼苏达大学医学中心,站点 A)提取,用于模型开发和内部验证,在随后的 2 年时间里,在另一个中心(加州大学旧金山分校,站点 B)提取,用于外部验证。使用曲线下面积(AUC)评分和相应的 95%置信区间,对术后 30 天内自动检测 NSQIP SSI 的浅层、器官空间和总 SSI 的模型进行验证。

结果

对于 8883 名患者(站点 A)和 1473 名患者(站点 B),任何结果的 AUC 评分均无统计学差异,包括浅层(外部 0.804,内部 [0.784,0.874] AUC);器官/空间(外部 0.905,内部 [0.867,0.941] AUC);以及总(外部 0.855,内部 [0.854,0.908] AUC)SSI。假阴性率随着病例审查量的增加而降低,因此可以采用一种策略,即对 SSI 预测概率低的病例,可以不进行图表审查。

结论

我们的研究结果表明,在一个站点开发的 SSI 检测机器学习算法可以推广到另一个机构。SSI 检测模型在实践中可用于加速和重点审查图表。

相似文献

1
Applying Machine Learning Across Sites: External Validation of a Surgical Site Infection Detection Algorithm.
J Am Coll Surg. 2021 Jun;232(6):963-971.e1. doi: 10.1016/j.jamcollsurg.2021.03.026. Epub 2021 Apr 5.
2
Accelerating Surgical Site Infection Abstraction With a Semi-automated Machine-learning Approach.
Ann Surg. 2022 Jul 1;276(1):180-185. doi: 10.1097/SLA.0000000000004354. Epub 2020 Oct 14.
5
Machine learning applications for the prediction of surgical site infection in neurological operations.
Neurosurg Focus. 2019 Aug 1;47(2):E7. doi: 10.3171/2019.5.FOCUS19241.
6
Modernizing Surgical Quality: A Novel Approach to Improving Detection of Surgical Site Infections in the Veteran Population.
Surg Infect (Larchmt). 2024 Sep;25(7):499-504. doi: 10.1089/sur.2024.013. Epub 2024 Jul 8.
8
An explainable long short-term memory network for surgical site infection identification.
Surgery. 2024 Jul;176(1):24-31. doi: 10.1016/j.surg.2024.03.006. Epub 2024 Apr 18.
9
Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record.
J Biomed Inform. 2017 Apr;68:112-120. doi: 10.1016/j.jbi.2017.03.009. Epub 2017 Mar 16.
10
Do risk calculators accurately predict surgical site occurrences?
J Surg Res. 2016 Jun 1;203(1):56-63. doi: 10.1016/j.jss.2016.03.040. Epub 2016 Mar 26.

引用本文的文献

2
3
An explainable long short-term memory network for surgical site infection identification.
Surgery. 2024 Jul;176(1):24-31. doi: 10.1016/j.surg.2024.03.006. Epub 2024 Apr 18.
4
Risk Management and Patient Safety in the Artificial Intelligence Era: A Systematic Review.
Healthcare (Basel). 2024 Feb 27;12(5):549. doi: 10.3390/healthcare12050549.
5
Strategies to prevent surgical site infections in acute-care hospitals: 2022 Update.
Infect Control Hosp Epidemiol. 2023 May;44(5):695-720. doi: 10.1017/ice.2023.67. Epub 2023 May 4.
6
Data-Driven Technologies as Enablers for Value Creation in the Prevention of Surgical Site Infections: a Systematic Review.
J Healthc Inform Res. 2023 Feb 27;7(1):1-41. doi: 10.1007/s41666-023-00129-2. eCollection 2023 Mar.
9
Artificial Intelligence-Assisted Surgical Quality Assessment: Hype or Hope?
J Am Coll Surg. 2021 Jun;232(6):971-972. doi: 10.1016/j.jamcollsurg.2021.03.022.

本文引用的文献

1
Accelerating Surgical Site Infection Abstraction With a Semi-automated Machine-learning Approach.
Ann Surg. 2022 Jul 1;276(1):180-185. doi: 10.1097/SLA.0000000000004354. Epub 2020 Oct 14.
2
Characterizing Surgical Site Infection Signals in Clinical Notes.
Stud Health Technol Inform. 2017;245:955-959.
3
American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update.
J Am Coll Surg. 2017 Jan;224(1):59-74. doi: 10.1016/j.jamcollsurg.2016.10.029. Epub 2016 Nov 30.
6
Automating data abstraction in a quality improvement platform for surgical and interventional procedures.
EGEMS (Wash DC). 2014 Nov 26;2(1):1114. doi: 10.13063/2327-9214.1114. eCollection 2014.
7
Facilitating post-surgical complication detection through sublanguage analysis.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:77-82. eCollection 2014.
8
Automated chart review for asthma cohort identification using natural language processing: an exploratory study.
Ann Allergy Asthma Immunol. 2013 Nov;111(5):364-9. doi: 10.1016/j.anai.2013.07.022. Epub 2013 Aug 12.
10
Improving risk-adjusted measures of surgical site infection for the national healthcare safety network.
Infect Control Hosp Epidemiol. 2011 Oct;32(10):970-86. doi: 10.1086/662016. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验