Suppr超能文献

用于从电子健康记录中为阿片类药物警戒提供信息的人工智能软件原型:开发与可用性研究。

Artificial Intelligence-Enabled Software Prototype to Inform Opioid Pharmacovigilance From Electronic Health Records: Development and Usability Study.

作者信息

Sorbello Alfred, Haque Syed Arefinul, Hasan Rashedul, Jermyn Richard, Hussein Ahmad, Vega Alex, Zembrzuski Krzysztof, Ripple Anna, Ahadpour Mitra

机构信息

Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.

Neuromuscular Institute, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States.

出版信息

JMIR AI. 2023 Jan-Dec;2:e45000. doi: 10.2196/45000. Epub 2023 Jul 18.

Abstract

BACKGROUND

The use of patient health and treatment information captured in structured and unstructured formats in computerized electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources.

OBJECTIVE

Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA.

METHODS

We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named entity recognition. Fifteen FDA staff members provided feedback on the prototype's features and functionalities.

RESULTS

Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs. The AI-enabled model achieved accuracy, recall, precision, and -scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users' individual needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project summaries.

CONCLUSIONS

The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden.

摘要

背景

在计算机化电子健康记录(EHR)存储库中以结构化和非结构化格式捕获的患者健康和治疗信息,可能有助于增强对美国食品药品监督管理局(FDA)监管的药品安全信号的检测。自然语言处理和其他人工智能(AI)技术提供了新的方法,可用于从EHR资源中提取临床有用信息。

目的

我们的目标是开发一种新型的人工智能软件原型,以从EHR中的自由文本出院小结中识别药物不良事件(ADE)安全信号,从而加强FDA的阿片类药物安全性和研究活动。

方法

我们开发了一个基于网络的软件原型,该原型利用基于规则的算法和深度学习进行关键词和触发短语搜索,以从重症监护医学信息库III(MIMIC III)数据库中的出院小结中提取特定阿片类药物的候选ADE。该原型使用MedSpacy组件来识别出院小结的相关部分,并使用预训练的自然语言处理(NLP)模型Spark NLP for Healthcare进行命名实体识别。15名FDA工作人员对该原型的功能和特性提供了反馈。

结果

使用该原型,我们能够从EHR中的文本中识别出已知的、标记的、与阿片类药物相关的药物不良反应。该人工智能模型的准确率、召回率、精确率和F1值分别为0.66、0.69、0.64和0.67。FDA的参与者认为该原型在用户满意度、可视化以及从EHR数据中支持阿片类药物安全信号检测的潜力方面非常理想,同时节省了时间和人力。可行的设计建议包括:(1)扩大标签和可视化;(2)提供更大的灵活性和定制性以满足最终用户的个人需求;(3)提供额外的指导资源;(4)添加多个图形导出功能;(5)添加项目总结。

结论

该新型原型使用基于创新人工智能的技术,自动搜索、提取和分析EHR中非结构化文本中捕获的临床有用信息。它提高了利用真实世界数据保障阿片类药物安全的效率,增加了数据在支持监管审查方面的可用性,同时减轻了人工研究负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6df/11332961/9247f9ba2c6e/ai_v2i1e45000_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验