High Performance Computing & Environmental Fluid Dynamic Laboratory, Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan.
Biomed Eng Online. 2011 Jun 17;10:52. doi: 10.1186/1475-925X-10-52.
Previous research shows that the flow dynamics in the left ventricle (LV) reveal important information about cardiac health. This information can be used in early diagnosis of patients with potential heart problems. The current study introduces a patient-specific cardiovascular-modelling system (CMS) which simulates the flow dynamics in the LV to facilitate physicians in early diagnosis of patients before heart failure.
The proposed system will identify possible disease conditions and facilitates early diagnosis through hybrid computational fluid dynamics (CFD) simulation and time-resolved magnetic resonance imaging (4-D MRI). The simulation is based on the 3-D heart model, which can simultaneously compute fluid and elastic boundary motions using the immersed boundary method. At this preliminary stage, the 4-D MRI is used to provide an appropriate comparison. This allows flexible investigation of the flow features in the ventricles and their responses.
The results simulate various flow rates and kinetic energy in the diastole and systole phases, demonstrating the feasibility of capturing some of the important characteristics of the heart during different phases. However, some discrepancies exist in the pulmonary vein and aorta flow rate between the numerical and experimental data. Further studies are essential to investigate and solve the remaining problems before using the data in clinical diagnostics.
The results show that by using a simple reservoir pressure boundary condition (RPBC), we are able to capture some essential variations found in the clinical data. Our approach establishes a first-step framework of a practical patient-specific CMS, which comprises a 3-D CFD model (without involving actual hemodynamic data yet) to simulate the heart and the 4-D PC-MRI system. At this stage, the 4-D PC-MRI system is used for verification purpose rather than input. This brings us closer to our goal of developing a practical patient-specific CMS, which will be pursued next. We anticipate that in the future, this hybrid system can potentially identify possible disease conditions in LV through comprehensive analysis and facilitates physicians in early diagnosis of probable cardiac problems.
先前的研究表明,左心室(LV)的流动动力学揭示了有关心脏健康的重要信息。这些信息可用于对潜在心脏问题患者进行早期诊断。本研究引入了一种患者特异性心血管建模系统(CMS),该系统通过混合计算流体动力学(CFD)模拟和时变磁共振成像(4-D MRI)来模拟 LV 中的流动动力学,以帮助医生在心力衰竭之前对患者进行早期诊断。
拟议的系统将通过混合计算流体动力学(CFD)模拟和时变磁共振成像(4-D MRI)来识别可能的疾病状况,并通过时变磁共振成像(4-D MRI)来促进早期诊断。该模拟基于 3-D 心脏模型,该模型可以使用浸入边界法同时计算流体和弹性边界运动。在这个初步阶段,使用 4-D MRI 来提供适当的比较。这允许灵活地研究心室中的流动特征及其响应。
结果模拟了舒张期和收缩期的各种流量和动能,证明了在不同阶段捕获心脏一些重要特征的可行性。然而,数值和实验数据之间存在肺静脉和主动脉流量率的差异。在将数据用于临床诊断之前,需要进行进一步的研究来调查和解决剩余的问题。
结果表明,通过使用简单的储液器压力边界条件(RPBC),我们能够捕获到临床数据中发现的一些重要变化。我们的方法建立了一个实用的患者特异性 CMS 的第一步框架,该框架包括一个 3-D CFD 模型(尚未涉及实际血流动力学数据)来模拟心脏和 4-D PC-MRI 系统。在现阶段,4-D PC-MRI 系统用于验证目的,而不是输入。这使我们更接近开发实用的患者特异性 CMS 的目标,这将是下一步的目标。我们预计,在未来,这种混合系统可以通过综合分析来识别 LV 中的可能疾病状况,并帮助医生对可能的心脏问题进行早期诊断。