Suppr超能文献

纤维素酶:从基因组角度看,模糊的非同源酶。

Cellulases: ambiguous nonhomologous enzymes in a genomic perspective.

机构信息

BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Trends Biotechnol. 2011 Oct;29(10):473-9. doi: 10.1016/j.tibtech.2011.04.008. Epub 2011 Jun 16.

Abstract

The key material for bioethanol production is cellulose, which is one of the main components of the plant cell wall. Enzymatic depolymerization of cellulose is an essential step in bioethanol production, and can be accomplished by fungal and bacterial cellulases. Most of the biochemically characterized bacterial cellulases come from only a few cellulose-degrading bacteria, thus limiting our knowledge of a range of cellulolytic activities that exist in nature. The recent explosion of genomic data offers a unique opportunity to search for novel cellulolytic activities; however, the absence of clear understanding of structural and functional features that are important for reliable computational identification of cellulases precludes their exploration in the genomic datasets. Here, we explore the diversity of cellulases and propose a genomic approach to overcome this bottleneck.

摘要

生产生物乙醇的关键原料是纤维素,它是植物细胞壁的主要成分之一。纤维素的酶解是生物乙醇生产的一个重要步骤,可以通过真菌和细菌纤维素酶来完成。大多数经过生物化学表征的细菌纤维素酶都来自少数几种纤维素降解细菌,因此限制了我们对自然界中存在的一系列纤维素酶活性的了解。最近基因组数据的爆发为寻找新的纤维素酶活性提供了一个独特的机会;然而,由于缺乏对结构和功能特征的清晰理解,这些特征对于可靠的计算鉴定纤维素酶至关重要,因此无法在基因组数据集中对其进行探索。在这里,我们探讨了纤维素酶的多样性,并提出了一种基因组方法来克服这一瓶颈。

相似文献

1
Cellulases: ambiguous nonhomologous enzymes in a genomic perspective.纤维素酶:从基因组角度看,模糊的非同源酶。
Trends Biotechnol. 2011 Oct;29(10):473-9. doi: 10.1016/j.tibtech.2011.04.008. Epub 2011 Jun 16.
4
Marine Microbes as a Potential Source of Cellulolytic Enzymes.海洋微生物作为纤维素分解酶的潜在来源
Adv Food Nutr Res. 2016;79:27-41. doi: 10.1016/bs.afnr.2016.07.002. Epub 2016 Aug 24.
6
Fungal cellulases.真菌纤维素酶
Chem Rev. 2015 Feb 11;115(3):1308-448. doi: 10.1021/cr500351c. Epub 2015 Jan 28.
8
An overview on marine cellulolytic enzymes and their potential applications.海洋纤维素酶及其潜在应用概述。
Appl Microbiol Biotechnol. 2020 Aug;104(16):6873-6892. doi: 10.1007/s00253-020-10692-y. Epub 2020 Jun 17.
9
Convergent evolution of processivity in bacterial and fungal cellulases.细菌和真菌纤维素酶在延伸性上的趋同进化。
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19896-19903. doi: 10.1073/pnas.2011366117. Epub 2020 Aug 3.

引用本文的文献

2
Enzymatic degradation of cellulose in soil: A review.土壤中纤维素的酶促降解:综述
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.
8
Evidence for novel epigenetic marks within plants.植物体内新表观遗传标记的证据。
AIMS Genet. 2019 Dec 24;6(4):70-87. doi: 10.3934/genet.2019.4.70. eCollection 2019.

本文引用的文献

5
A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid.用稀硫酸预处理甘蔗渣样品的研究。
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1467-75. doi: 10.1007/s10295-010-0931-2. Epub 2011 Jan 6.
6
8
Processivity of cellobiohydrolases is limited by the substrate.纤维素酶的连续性受到底物的限制。
J Biol Chem. 2011 Jan 7;286(1):169-77. doi: 10.1074/jbc.M110.161059. Epub 2010 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验