Suppr超能文献

相似文献

1
Cellulases: ambiguous nonhomologous enzymes in a genomic perspective.
Trends Biotechnol. 2011 Oct;29(10):473-9. doi: 10.1016/j.tibtech.2011.04.008. Epub 2011 Jun 16.
2
Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
Adv Biochem Eng Biotechnol. 2012;128:1-24. doi: 10.1007/10_2011_131.
3
Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
Crit Rev Microbiol. 2018 Mar;44(2):244-257. doi: 10.1080/1040841X.2017.1337713. Epub 2017 Jun 13.
4
Marine Microbes as a Potential Source of Cellulolytic Enzymes.
Adv Food Nutr Res. 2016;79:27-41. doi: 10.1016/bs.afnr.2016.07.002. Epub 2016 Aug 24.
5
Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
Trends Biotechnol. 2013 Oct;31(10):581-93. doi: 10.1016/j.tibtech.2013.06.006. Epub 2013 Jul 31.
6
Fungal cellulases.
Chem Rev. 2015 Feb 11;115(3):1308-448. doi: 10.1021/cr500351c. Epub 2015 Jan 28.
7
Screening for cellulase-encoding clones in metagenomic libraries.
Methods Mol Biol. 2010;668:177-88. doi: 10.1007/978-1-60761-823-2_12.
8
An overview on marine cellulolytic enzymes and their potential applications.
Appl Microbiol Biotechnol. 2020 Aug;104(16):6873-6892. doi: 10.1007/s00253-020-10692-y. Epub 2020 Jun 17.
9
Convergent evolution of processivity in bacterial and fungal cellulases.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19896-19903. doi: 10.1073/pnas.2011366117. Epub 2020 Aug 3.
10
Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis.
Appl Microbiol Biotechnol. 2012 Jan;93(2):497-502. doi: 10.1007/s00253-011-3701-9. Epub 2011 Nov 24.

引用本文的文献

1
Comparative genomics reveals carbohydrate enzymatic fluctuations and herbivorous adaptations in arthropods.
Comput Struct Biotechnol J. 2024 Oct 18;23:3744-3758. doi: 10.1016/j.csbj.2024.10.027. eCollection 2024 Dec.
2
Enzymatic degradation of cellulose in soil: A review.
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.
3
Draft Genomes and Comparative Analysis of Seven Mangrove Rhizosphere-Associated Fungi Isolated From and .
Front Fungal Biol. 2021 Apr 14;2:626904. doi: 10.3389/ffunb.2021.626904. eCollection 2021.
4
Experimental and computational studies of cellulases as bioethanol enzymes.
Bioengineered. 2022 May;13(5):14028-14046. doi: 10.1080/21655979.2022.2085541.
6
A Need for Improved Cellulase Identification from Metagenomic Sequence Data.
Appl Environ Microbiol. 2020 Dec 17;87(1). doi: 10.1128/AEM.01928-20.
7
Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
Int J Mol Sci. 2020 Feb 26;21(5):1589. doi: 10.3390/ijms21051589.
8
Evidence for novel epigenetic marks within plants.
AIMS Genet. 2019 Dec 24;6(4):70-87. doi: 10.3934/genet.2019.4.70. eCollection 2019.
9
Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere.
ISME J. 2020 Mar;14(3):659-675. doi: 10.1038/s41396-019-0557-y. Epub 2019 Nov 21.
10
Metagenomic Insights Into a Cellulose-Rich Niche Reveal Microbial Cooperation in Cellulose Degradation.
Front Microbiol. 2019 Mar 28;10:618. doi: 10.3389/fmicb.2019.00618. eCollection 2019.

本文引用的文献

1
Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5237-42. doi: 10.1073/pnas.1015006108. Epub 2011 Mar 10.
3
Evolution and diversity of plant cell walls: from algae to flowering plants.
Annu Rev Plant Biol. 2011;62:567-90. doi: 10.1146/annurev-arplant-042110-103809.
4
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.
Science. 2011 Jan 28;331(6016):463-7. doi: 10.1126/science.1200387.
5
A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid.
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1467-75. doi: 10.1007/s10295-010-0931-2. Epub 2011 Jan 6.
6
Applications of computational science for understanding enzymatic deconstruction of cellulose.
Curr Opin Biotechnol. 2011 Apr;22(2):231-8. doi: 10.1016/j.copbio.2010.11.005. Epub 2010 Dec 17.
8
Processivity of cellobiohydrolases is limited by the substrate.
J Biol Chem. 2011 Jan 7;286(1):169-77. doi: 10.1074/jbc.M110.161059. Epub 2010 Nov 4.
10
Origins and diversification of a complex signal transduction system in prokaryotes.
Sci Signal. 2010 Jun 29;3(128):ra50. doi: 10.1126/scisignal.2000724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验