Suppr超能文献

使用 GPU 通过穷举法检测数量性状的上位性。

Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs.

机构信息

Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany.

出版信息

Bioinformatics. 2011 Jul 1;27(13):i214-21. doi: 10.1093/bioinformatics/btr218.

Abstract

MOTIVATION

In recent years, numerous genome-wide association studies have been conducted to identify genetic makeup that explains phenotypic differences observed in human population. Analytical tests on single loci are readily available and embedded in common genome analysis software toolset. The search for significant epistasis (gene-gene interactions) still poses as a computational challenge for modern day computing systems, due to the large number of hypotheses that have to be tested.

RESULTS

In this article, we present an approach to epistasis detection by exhaustive testing of all possible SNP pairs. The search strategy based on the Hilbert-Schmidt Independence Criterion can help delineate various forms of statistical dependence between the genetic markers and the phenotype. The actual implementation of this search is done on the highly parallelized architecture available on graphics processing units rendering the completion of the full search feasible within a day.

AVAILABILITY

The program is available at http://www.mpipsykl.mpg.de/epigpuhsic/.

CONTACT

tony@mpipsykl.mpg.de.

摘要

动机

近年来,已经进行了许多全基因组关联研究,以确定解释人类群体中观察到的表型差异的遗传构成。单基因座的分析测试易于获得,并嵌入常见的基因组分析软件工具集中。由于必须测试大量的假设,因此寻找显著的上位性(基因-基因相互作用)仍然对现代计算系统构成计算挑战。

结果

在本文中,我们提出了一种通过对所有可能的 SNP 对进行穷举测试来检测上位性的方法。基于 Hilbert-Schmidt 独立性准则的搜索策略有助于描绘遗传标记与表型之间的各种形式的统计相关性。该搜索的实际实现是在图形处理单元上的高度并行化架构上完成的,这使得在一天内完成完整搜索成为可能。

可用性

该程序可在 http://www.mpipsykl.mpg.de/epigpuhsic/ 获得。

联系方式

tony@mpipsykl.mpg.de

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3fe/3117340/0e4bd8e7b43f/btr218f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验