Suppr超能文献

矩阵上位性:具有协变量调整的数量性状超快速、全面的上位性扫描。

MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.

机构信息

Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Bioinformatics. 2018 Jul 15;34(14):2341-2348. doi: 10.1093/bioinformatics/bty094.

Abstract

MOTIVATION

For many traits, causal loci uncovered by genetic mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this 'missing heritability' have been proposed. Single nucleotide polymorphism (SNP)-SNP interaction (epistasis), as one of the compelling models, has been widely studied. However, the genome-wide scan of epistasis, especially for quantitative traits, poses huge computational challenges. Moreover, covariate adjustment is largely ignored in epistasis analysis due to the massive extra computational undertaking.

RESULTS

In the current study, we found striking differences among epistasis models using both simulation data and real biological data, suggesting that not only can covariate adjustment remove confounding bias, it can also improve power. Furthermore, we derived mathematical formulas, which enable the exhaustive epistasis scan together with full covariate adjustment to be expressed in terms of large matrix operation, therefore substantially improving the computational efficiency (∼104× faster than existing methods). We call the new method MatrixEpistasis. With MatrixEpistasis, we re-analyze a large real yeast dataset comprising 11 623 SNPs, 1008 segregants and 46 quantitative traits with covariates fully adjusted and detect thousands of novel putative epistasis with P-values < 1.48e-10.

AVAILABILITY AND IMPLEMENTATION

The method is implemented in R and available at https://github.com/fanglab/MatrixEpistasis.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

对于许多性状,遗传图谱研究发现的因果位点仅能解释性状变异中可遗传贡献的一小部分。对于这种“遗传缺失”提出了多种解释。单核苷酸多态性 (SNP)-SNP 相互作用(上位性)作为一种引人注目的模型,已经得到了广泛的研究。然而,全基因组上位性扫描,特别是对于数量性状,带来了巨大的计算挑战。此外,由于计算量巨大,协变量调整在多数情况下被忽略。

结果

在当前研究中,我们使用模拟数据和真实生物学数据发现了上位性模型之间的显著差异,表明协变量调整不仅可以消除混杂偏差,还可以提高功效。此外,我们推导出了数学公式,这些公式使得全基因组扫描和完全的协变量调整可以通过大型矩阵运算来表示,从而大大提高了计算效率(比现有方法快 104 倍)。我们将新方法称为 MatrixEpistasis。使用 MatrixEpistasis,我们重新分析了一个包含 11623 个 SNP、1008 个分离群体和 46 个具有充分协变量调整的数量性状的大型真实酵母数据集,检测到数千个具有 P 值 < 1.48e-10 的新上位性。

可用性和实现

该方法已在 R 中实现,可在 https://github.com/fanglab/MatrixEpistasis 上获取。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

3
EpiGEN: an epistasis simulation pipeline.EpiGEN:一个上位性模拟管道。
Bioinformatics. 2020 Dec 8;36(19):4957-4959. doi: 10.1093/bioinformatics/btaa245.

引用本文的文献

1
Epistasis regulates genetic control of cardiac hypertrophy.上位性调控心脏肥大的遗传控制。
Nat Cardiovasc Res. 2025 Jun;4(6):740-760. doi: 10.1038/s44161-025-00656-8. Epub 2025 Jun 5.
4
An overview of recent technological developments in bovine genomics.牛基因组学近期技术发展概述。
Vet Anim Sci. 2024 Jul 23;25:100382. doi: 10.1016/j.vas.2024.100382. eCollection 2024 Sep.
6
Epistasis regulates genetic control of cardiac hypertrophy.上位性调控心脏肥大的遗传控制。
medRxiv. 2024 May 4:2023.11.06.23297858. doi: 10.1101/2023.11.06.23297858.

本文引用的文献

2
Detecting epistasis in human complex traits.检测人类复杂性状中的上位性。
Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9.
4
CAPE: an R package for combined analysis of pleiotropy and epistasis.CAPE:用于多效性和上位性联合分析的 R 包。
PLoS Comput Biol. 2013 Oct;9(10):e1003270. doi: 10.1371/journal.pcbi.1003270. Epub 2013 Oct 24.
5
Finding the sources of missing heritability in a yeast cross.在酵母杂交中寻找遗传缺失的来源。
Nature. 2013 Feb 14;494(7436):234-7. doi: 10.1038/nature11867. Epub 2013 Feb 3.
7
Matrix eQTL: ultra fast eQTL analysis via large matrix operations.矩阵 eQTL:通过大型矩阵运算实现超快速 eQTL 分析。
Bioinformatics. 2012 May 15;28(10):1353-8. doi: 10.1093/bioinformatics/bts163. Epub 2012 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验