Suppr超能文献

超分子自旋阀。

Supramolecular spin valves.

机构信息

Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France.

出版信息

Nat Mater. 2011 Jun 19;10(7):502-6. doi: 10.1038/nmat3050.

Abstract

Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

摘要

磁性分子是设计自旋电子器件的潜在构建块。此外,分子材料使自下而上的加工技术(例如传统的自上而下的纳米制造)得以结合。基于巨磁电阻、隧道磁电阻和自旋阀效应的固态自旋电子器件的发展彻底改变了磁存储应用。最近,在有机半导体隧道结中观察到自旋弛豫时间的显著提高,与磁性电极耦合的单个非磁性分子表现出巨大的磁电阻,并且已经提出了利用单分子磁体量子隧道特性的混合器件。在这里,我们展示了一种原始的自旋阀器件,其中由与非磁性电极接触的单壁碳纳米管制成的非磁性分子量子点通过超分子相互作用横向耦合到 TbPc(2)单分子磁体(Pc=酞菁)。它们的局域磁矩导致通过单壁碳纳米管的电输运对磁场的依赖性,从而在低于 1 K 的温度下实现高达 300%的磁电阻比。因此,我们证明了没有磁性引线的超分子自旋阀的功能。我们的结果为具有量子特性的新型自旋电子器件开辟了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验