Crable Bryan R, Plugge Caroline M, McInerney Michael J, Stams Alfons J M
Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
Enzyme Res. 2011;2011:532536. doi: 10.4061/2011/532536. Epub 2011 May 24.
Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO(2) and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO(2) in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO(2) and H(2) or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.
生物甲烷化是一种成熟的燃料生产技术。第四代生物燃料的研究将集中于二氧化碳的封存,并提供碳中性或负碳策略,以应对日益减少的化石燃料供应和环境影响。甲酸是复杂有机物质产甲烷分解过程中的重要中间体,也是甲烷、氢气以及可能的甲醇等生物燃料生产的重要前体。甲酸可通过丙酮酸的辅酶A依赖性裂解或通过以NADH或铁氧化还原蛋白为依赖性的方式将二氧化碳酶促还原产生。甲酸可通过氧化为二氧化碳和氢气而被消耗,或者可通过伍德-Ljungdahl途径进一步还原用于碳固定,或在工业上用于生产甲醇。在此,我们综述了参与甲酸相互转化的酶,并讨论了其在生物燃料生产中的潜在应用。